\qquad

Tutorial Worksheet 2

Show all your work.

1. Let ℓ be the intersection of the planes given by equations $2 x-4 y+z=0$ and $3 x-y-$ $2 z+9=0$. Find an equation for ℓ in the form $\mathbf{r}(t)=\mathbf{r}_{0}+t \mathbf{v}$.
Solution: A point on both planes can be chosen as ($0,1,4$). Now we compute

$$
\left|\begin{array}{ccc}
\mathbf{i} & \mathbf{j} & \mathbf{k} \\
2 & -4 & 1 \\
3 & -1 & -2
\end{array}\right|=\langle | \begin{array}{cc}
-4 & 1 \\
-1 & -2
\end{array}\left|,-\left|\begin{array}{cc}
2 & 1 \\
3 & -2
\end{array}\right|,\left|\begin{array}{cc}
2 & -4 \\
3 & -1
\end{array}\right|\right\rangle=\langle 9,7,10\rangle
$$

This gives us a vector parallel to ℓ and a point on ℓ, so an equation for it is $\mathbf{r}(t)=t\langle 9,7,10\rangle+$ $\langle 0,1,4\rangle$.
2. A point moves in space in such a way that at time t its position is given by the vectorvalued function $\mathbf{r}(t)=\left\langle t^{2}+t+1,-\frac{7}{2} t,-t+4\right\rangle$. At what time(s) does the point hit the plane $x+2 y+z=-5$?

Solution: We solve

$$
t^{2}+t+1+2\left(-\frac{7}{2} t\right)+(-t+4)=-5
$$

and get $t=2,5$.
3. Determine the speed at $t=2$ of an object whose position function is $\mathbf{r}(t)=\left\langle t^{2}+1, t^{3}, t^{2}-1\right\rangle$.

Solution: $\mathbf{r}^{\prime}(t)=\left\langle 2 t, 3 t^{2}, 2 t\right\rangle$ so the speed is $\left|\mathbf{r}^{\prime}(2)\right|=|\langle 4,12,4\rangle|=\sqrt{16+144+16}=$ $\sqrt{176}$.
4. Find an equation of the plane perpendicular to the line $x=2016, y=1-7 t, z=89+8 t$ passing through the point $(1,1,1)$.
Solution: A normal vector of the plane is $\langle 0,-7,8\rangle$. Therefore an equation for the plane is given by

$$
-7 y+8 z=m
$$

Plug in $(1,1,1)$ and one sees $m=1$.
5. The initial position and velocity of an object moving with acceleration $\mathbf{a}(t)=\mathbf{i}+2 \mathbf{j}+6 t \mathbf{k}$ are $\mathbf{r}(0)=\mathbf{i}-2 \mathbf{j}+3 \mathbf{k}$ and $\mathbf{v}(0)=\mathbf{j}-\mathbf{k}$. Find its position at time t.

Solution: $\mathbf{v}(t)=\int \mathbf{a}(t) d t=\int\langle 1,2,6 t\rangle d t=\left\langle t, 2 t, 3 t^{2}\right\rangle+\mathbf{c}$. Since $\mathbf{v}(0)=\langle 0,1,-1\rangle$ so $\mathbf{c}=\langle 0,1,-1\rangle$ and $\mathbf{v}(t)=\left\langle t, 2 t+1,3 t^{2}-1\right\rangle$.

Then $\mathbf{r}(t)=\int \mathbf{v}(t) d t=\int\left\langle t, 2 t+1,3 t^{2}-1\right\rangle d t=\left\langle\frac{t^{2}}{2}, t^{2}+t, t^{3}-t\right\rangle+\mathbf{c}$. Then $\mathbf{r}(0)=$ $\langle 1,-2,3\rangle$ and $\mathbf{c}=\langle 1,-2,3\rangle$ and $\mathbf{r}(t)=\left\langle\frac{t^{2}}{2}+1, t^{2}+t-2, t^{3}-t+3\right\rangle$.
6. Find the distance from the point $(2,-2,3)$ to the plane $6 x+4 y-3 z=2$.

Solution: We compute

$$
\left|\frac{6 \cdot 2+4 \cdot(-2)-3 \cdot 3-2}{\sqrt{6^{2}+4^{2}+(-3)^{2}}}\right|=\frac{7}{\sqrt{61}}
$$

7. Find the acute angle of the intersection of the two curves $\mathbf{a}(u)=\langle 1-u, u+2,-3 u\rangle$ and $\mathbf{b}(v)=\left\langle v, 2 v, v^{2}-v\right\rangle$.

Solution: First we find the point of the intersection by solving

$$
\begin{gathered}
1-u=v \\
u+2=2 v \\
-3 u=v^{2}-v
\end{gathered}
$$

This gives $u=0$ and $v=1$ and we see the intersection point is $(1,2,0)$. So $\mathbf{a}^{\prime}(0)=$ $\langle-1,1,-3\rangle$ and $\mathbf{b}^{\prime}(1)=\langle 1,2,1\rangle$. The cosine of the acute angle between these two vectors is $\left|\frac{\mathbf{a}^{\prime}(0) \cdot \mathbf{b}^{\prime}(1)}{\left|\mathbf{a}^{\prime}(0)\right|\left|\mathbf{b}^{\prime}(1)\right|}\right|=\frac{2}{\sqrt{66}}$. So the angle is $\arccos \left(\frac{2}{\sqrt{66}}\right)$.

