Tutorial Worksheet

Show all your work.

1. A particle moves with position function $\mathbf{r}(t)=\left\langle\cos t, \sin t, \cos ^{2} t\right\rangle$. Find the tangential and normal components of acceleration when $t=\pi / 4$.
2. Let C be the curve of intersection of the parabolic cylinder $x^{2}=2 y$ and the surface $3 z=x y$. Find the exact length of C from the origin to the point $(6,18,36)$.
3. Find the equation for the normal and osculating planes to the curves $\mathbf{r}(t)=\left(t-\frac{3}{2} \sin (t)\right) \mathbf{i}+$ $\left(1-\frac{3}{2} \cos (t)\right) \mathbf{j}+t \mathbf{k}$ at the point $\left(\pi, \frac{5}{2}, \pi\right)$.
4. Find the unit tangent, the unit normal, and the binormal vectors \mathbf{T}, \mathbf{N} and \mathbf{B} to the curve $\mathbf{r}(t)=\left\langle\sin 2 t, \cos 2 t, 3 t^{2}\right\rangle$ at $t=\pi$.
5. Find equations of the normal and osculating planes of the curve $\mathbf{r}(t)=\left\langle t^{2}, \ln t, t \ln t\right\rangle$ at the point $(1,0,0)$.
6. Find equations of the normal and osculating planes of the curve of intersection of the parabolic cylinders $x=y^{2}$ and $z=x^{2}$ at the point $(1,1,1)$
