\qquad

Tutorial Worksheet

Show all your work.

1. Do the following limits exist? If it exists, compute the limit, if not, explain why it does not exist.

$$
\lim _{(x, y) \rightarrow(0,0)} \frac{x^{2} y^{2}}{x^{4}+3 y^{4}}, \lim _{(x, y) \rightarrow(0,0)} \frac{x^{4} y^{4}}{x^{4}+y^{4}}
$$

Solution. Along x-axis, $y=0, \lim _{(x, y) \rightarrow(0,0)} \frac{x^{2} y^{2}}{x^{4}+3 y^{4}}=\lim _{x \rightarrow 0} \frac{x^{2} 0^{2}}{x^{4}+3 \cdot 0^{4}}=0$.
Along the path $x=y, \lim _{(x, y) \rightarrow(0,0)} \frac{x^{2} y^{2}}{x^{4}+3 y^{4}}=\lim _{x \rightarrow 0} \frac{x^{4}}{4 x^{4}}=\frac{1}{4}$.
Hence $\lim _{(x, y) \rightarrow(0,0)} \frac{x^{2} y^{2}}{x^{4}+3 y^{4}}$ does not exist.
For the second limit, note that if $x=0$ or $y=0$, then the function is also zero. So we may assume that we are taking the limit over nonzero x and y. Then we can rewrite the limit as follows

$$
\lim _{x, y \rightarrow 0} \frac{x^{4} y^{4}}{x^{4}+y^{4}}=\lim _{x, y \rightarrow 0} \frac{1}{\frac{x^{4}+y^{4}}{x^{4} y^{4}}}=\lim _{x, y \rightarrow 0} \frac{1}{\frac{1}{x^{4}}+\frac{1}{y^{4}}}=\frac{1}{\infty}=0
$$

2. Let $f(x, y)$ be a function whose partial derivatives satisfy

$$
\begin{aligned}
& \partial_{x} f(x, y)=x+4 y \\
& \partial_{y} f(x, y)=3 x-y
\end{aligned}
$$

Find f.
Solution. There is no such function. Indeed, the first condition implies that

$$
f(x, y)=\frac{1}{2} x^{2}+4 x y+g(y)
$$

for some function $g(y)$ in the variable y. Similarly, the second condition implies that

$$
f(x, y)=3 x y-\frac{1}{2} y^{2}+h(x)
$$

for some function $h(x)$ in the variable x. Equating these two expressions yields

$$
h(x)-g(y)=\frac{1}{2}(x+y)^{2}=\frac{1}{2}\left(x^{2}+y^{2}+x y\right) .
$$

The left hand side has no mixed terms, while the right hand side has an $x y$, which is impossible.

Alternatively, we could have shown this by appealing to Clariut's theorem. Namely, we see from the conditions that

$$
\partial_{y} \partial_{x} f=4
$$

while

$$
\partial_{x} \partial_{y} f=3
$$

Clairut's theorem dictates then that $3=4$, which is false. Thus there cannot be a function with the above partial derivatives.
3. Determine the subset of \mathbb{R}^{2} on which the function

$$
f(x, y)=\ln \left(x^{2}+y^{2}-4\right)
$$

is continuous and compute its partial derivatives.
Solution. Since the function $\ln (x)$ is smooth, the above $f(x, y)$ is continuous wherever the expression $x^{2}+y^{2}-4$ takes values in the domain of $\ln (x)$, which is positive real numbers. Thus the function is continuous wherever it is defined, which is the subset

$$
\left\{(x, y) \in \mathbb{R}^{2} \mid x^{2}+y^{2}>4\right\}
$$

Also

$$
\partial_{x} f(x, y)=\frac{2 x}{x^{2}+y^{2}-4}
$$

and

$$
\partial_{y} f(x, y)=\frac{2 y}{x^{2}+y^{2}-4}
$$

4. A cylinder containing an incompressible fluid is being squeezed from both ends. If the length of the cylinder is changing at a rate of $-3 \mathrm{~m} / \mathrm{s}$, calculate the rate at which the radius is changing when the radius is 2 m and the length is 1 m . (Note: An incompressible fluid is a fluid whose volume does not change.)

Solution. The volume of the cylinder is $V=\pi r^{2} l$. By the assumption of incompressibility $\frac{d V}{d t}=0$.

$$
\begin{aligned}
& 2 \pi r l \frac{d r}{d t}+\pi r^{2} \frac{d l}{d t}=0 \\
& 2 \pi r l \frac{d r}{d t}-3 \pi r^{2}=0 \\
& \frac{d r}{d t}=\frac{3 r}{2 l}
\end{aligned}
$$

When $r=2, l=1, \frac{d r}{d t}=3 \mathrm{~m} / \mathrm{s}$.

