Name:

Math 20550 Calculus III Tutorial February 25, 2016

Tutorial Worksheet

Show all your work.

1. The height of a mountain is given by $f(x,y) = 8000 - \frac{x^2}{100} - \frac{y^2}{50}$. Suppose one is at the point (60, 100). In what direction is the elevation decreasing fastest? What is the maximum rate of change of the elevation at this point?

2. Find the tangent plane and the normal line to the surface $x^2 + y^2 + z^2 = 3x$ at the point P: (1, 1, 1). Also find the tangent line to the curve of the intersection of this surface and 2x - 3y + 5z - 4 = 0 at P.

3. Find the local maxima, minima, and saddle points of the function $z = (x^2 + y^2)e^{-y}$.

4. Identify the maximum and minimum values attained by $z = x^2y - 2x^2$ within the triangle T bounded by the points P(0,0), Q(2,0), and R(0,4).

5. Identify the maximum and minimum values attained by $z = 4x^2 - y^2 + 1$ within the region R bounded by the curve $4x^2 + y^2 = 16$.

6. Use Lagrange multiplier to maximize f(x, y, z) = xyz subject to $x^2 + 2y^2 + 3z^2 = 9$, assuming that x, y, and z are nonnegative. Explain why the extremum you find is a maximum.