Tutorial Worksheet

Show all your work.

1. The height of a mountain is given by $f(x, y)=8000-\frac{x^{2}}{100}-\frac{y^{2}}{50}$. Suppose one is at the point $(60,100)$. In what direction is the elevation decreasing fastest? What is the maximum rate of change of the elevation at this point?

Solution: We compute $\nabla f=\langle-0.02 x,-0.04 y\rangle$. The maximum rate of change of the elevation will then occur in the direction of $\nabla f(60,100)=\langle-1 \cdot 2,-4\rangle$. The direction in which the elevation is decreasing fastest is $\langle 1.2,4\rangle$. The maximum rate of change of the elevation at this point is $\sqrt{(-1.2)^{2}+(-4)^{2}}=\sqrt{17.44}$.
2. Find the tangent plane and the normal line to the surface $x^{2}+y^{2}+z^{2}=3 x$ at the point $P:(1,1,1)$. Also find the tangent line to the curve of the intersection of this surface and $2 x-3 y+5 z-4=0$ at P.

Solution: The given surface is the zero level surface of the function $f(x, y, z)=x^{2}+y^{2}+$ $z^{2}-3 x$, whose gradient is

$$
\nabla f(x, y, z)=\langle 2 x-3,2 y, 2 z\rangle
$$

Thus, at the point $(1,1,1)$, we have $\nabla f(1,1,1)=\langle-1,2,2\rangle$. This vector is a normal vector to the tangent plane and a direction vector for the normal line, so that an equation of the tangent plane at $(1,1,1)$ is

$$
(-1)(x-1)+2(y-1)+2(z-1)=0 \Rightarrow-x+2 y+2 z=3,
$$

and an equation for the normal line at $(1,1,1)$ is

$$
r(t)=\langle 1,1,1\rangle+t\langle-1,2,2\rangle=\langle 1-t, 1+2 t, 1+2 t\rangle
$$

We compute $\langle-1,2,2\rangle \times\langle 2,-3,5\rangle=\langle 16,9,-1\rangle$. The tangent line to the intersection curve at $(1,1,1)$ is $\langle 1+16 t, 1+9 t, 1-t\rangle$.
3. Find the local maxima, minima, and saddle points of the function $z=\left(x^{2}+y^{2}\right) e^{-y}$.

Solution: Compute the gradient of $z=z(x, y)$, and then set it equal to zero to get:

$$
\nabla z(x, y)=\left\langle 2 x e^{-y},-x^{2} e^{-y}+2 y e^{-y}-y^{2} e^{-y}\right\rangle=\langle 0,0\rangle
$$

The only critical points are $(0,0)$ and $(0,2)$. At these points, we compute the Hessian of z :

$$
\operatorname{Hess}_{z}(0,0)=\left(\begin{array}{ll}
2 & 0 \\
0 & 2
\end{array}\right), \quad \operatorname{Hess}_{z}(0,2)=\left(\begin{array}{cc}
2 e^{-2} & 0 \\
0 & -2 e^{-2}
\end{array}\right)
$$

Note that at $(0,2)$, the determinant of the Hessian is negative, which means it is a saddle point. At $(0,0)$, the determinant is positive and the first entry of the first row is positive, which means it is a local minimum.
4. Identify the maximum and minimum values attained by $z=x^{2} y-2 x^{2}$ within the triangle T bounded by the points $P(0,0), Q(2,0)$, and $R(0,4)$.

Solution: First, we check for critical points in the interior of the triangle. The gradient of z is $\nabla z(x, y)=\left\langle 2 x y-4 x, x^{2}\right\rangle$, but this only vanishes along the boundary of the triangle (where $x=0$), so we move on to analyze the boundary.
From P to Q, the function z equals $-2 x^{2}, 0 \leq x \leq 2$, which has a maximum of 0 at 0 and a minimum of -8 at 2 .
From P to R, the function z is identically zero.
From Q to $R, y=-2 x+4$, so the function z becomes $z=x^{2}(-2 x+4)-2 x^{2}=-2 x^{3}+2 x^{2}$, $0 \leq x \leq 2$. Using Calc I tools, we discover that in this interval, z has a minimum of -8 at $x=2$ and a maximum of $8 / 27$ at $x=2 / 3$.
Comparing all these results, we conclude that on the whole triangle (including boundaries), the function reaches a global maximum of $8 / 27$ at $(2 / 3,8 / 3)$ and a global min of -8 at $(2,0)$. 5. Identify the maximum and minimum values attained by $z=4 x^{2}-y^{2}+1$ within the region R bounded by the curve $4 x^{2}+y^{2}=16$.
Solution: First, we check for critical points in the interior of the region. We have $\nabla z=$ $\langle 8 x,-2 y\rangle$, so the only critical point is $(0,0)$; but the Hessian at $(0,0)$ has negative determinant, hence $(0,0)$ is not a maximum, nor a minimum.
Now, we check for critical points along the boundary. The boundary consists of those points (x, y) such that $g(x, y)=0$, where $g(x, y)=4 x^{2}+y^{2}-16$. So $z=4 x^{2}-\left(16-4 x^{2}\right)+1=$ $8 x^{2}-15, x \in[-2,2]$. Then we see readily $z_{\max }=17$ and $z_{\min }=-15$.
6. Use Lagrange multiplier to maximize $f(x, y, z)=x y z$ subject to $x^{2}+2 y^{2}+3 z^{2}=$ 9 , assuming that x, y, and z are nonnegative. Explain why the extremum you find is a maximum.

Solution: The gradient of f is

$$
\nabla f=\langle y z, x z, x y\rangle
$$

Let $g=x^{2}+2 y^{2}+3 z^{2}$, then $\nabla g=\langle 2 x, 4 y, 6 z\rangle$. The system of equations we get by Lagrange multipliers is thus

$$
y z=2 \lambda x, x z=4 \lambda y, x y=6 \lambda z, x^{2}+2 y^{2}+3 z^{2}=9
$$

If we assume x, y, z are nonzero we then have

$$
\begin{gathered}
\lambda=\frac{y z}{2 x}=\frac{x z}{4 y}=\frac{x y}{6 z} \\
x^{2}+2 y^{2}+3 z^{2}=3 x^{2}=9 \quad \Longrightarrow \quad x^{2}=3 \quad \Longrightarrow \quad x= \pm \sqrt{3}
\end{gathered}
$$

Then we have $y= \pm \sqrt{\frac{3}{2}}$ and $z= \pm 1$. So we get 8 solutions.

$$
\begin{aligned}
& \quad\left(\sqrt{3}, \sqrt{\frac{3}{2}}, 1\right),\left(-\sqrt{3}, \sqrt{\frac{3}{2}}, 1\right),\left(\sqrt{3},-\sqrt{\frac{3}{2}}, 1\right),\left(\sqrt{3}, \sqrt{\frac{3}{2}},-1\right),\left(\sqrt{3},-\sqrt{\frac{3}{2}},-1\right) \\
& \left(-\sqrt{3},-\sqrt{\frac{3}{2}}, 1\right),\left(-\sqrt{3}, \sqrt{\frac{3}{2}},-1\right),\left(-\sqrt{3},-\sqrt{\frac{3}{2}},-1\right)
\end{aligned}
$$

If $x=0$, then we get solutions $(0,0, \sqrt{3}),(0,0,-\sqrt{3}),\left(0, \sqrt{\frac{9}{2}}, 0\right),\left(0,-\sqrt{\frac{9}{2}}, 0\right)$ (in those cases $\lambda=0$.) If $y=0$, then we get solutions $(0,0, \sqrt{3}),(0,0,-\sqrt{3}),(3,0,0),(-3,0,0)$ (in those cases $\lambda=0$.) If $z=0$, then we get solutions $\left(0, \sqrt{\frac{9}{2}}, 0\right),\left(0,-\sqrt{\frac{9}{2}}, 0\right),(3,0,0),(-3,0,0)$ (in those cases $\lambda=0$.) Evaluate $f(x, y, z)=x y z$ at those points and we have 3 possible outputs $\pm \frac{3}{\sqrt{2}}, 0$. Hence we conclude that the maximum is $\frac{3}{\sqrt{2}}$ and in particular it is attained at $\left(\sqrt{3}, \sqrt{\frac{3}{2}}, 1\right)$

