
Math 20550 Calculus III Tutorial Name:
February 25, 2016

Tutorial Worksheet

Show all your work.
1. The height of a mountain is given by f(x, y) = 8000 − x2

100
− y2

50
. Suppose one is at the

point (60, 100). In what direction is the elevation decreasing fastest? What is the maximum
rate of change of the elevation at this point?

Solution: We compute ∇f = ⟨−0.02x,−0.04y⟩. The maximum rate of change of the
elevation will then occur in the direction of ∇f(60, 100) = ⟨−1.2,−4⟩. The direction in
which the elevation is decreasing fastest is ⟨1.2, 4⟩. The maximum rate of change of the
elevation at this point is

√
(−1.2)2 + (−4)2 =

√
17.44.

2. Find the tangent plane and the normal line to the surface x2 + y2 + z2 = 3x at the point
P : (1, 1, 1). Also find the tangent line to the curve of the intersection of this surface and
2x− 3y + 5z − 4 = 0 at P.

Solution: The given surface is the zero level surface of the function f(x, y, z) = x2 + y2 +
z2 − 3x, whose gradient is

∇f(x, y, z) = ⟨2x− 3, 2y, 2z⟩.

Thus, at the point (1, 1, 1), we have ∇f(1, 1, 1) = ⟨−1, 2, 2⟩. This vector is a normal vector
to the tangent plane and a direction vector for the normal line, so that an equation of the
tangent plane at (1, 1, 1) is

(−1)(x− 1) + 2(y − 1) + 2(z − 1) = 0 ⇒ − x+ 2y + 2z = 3,

and an equation for the normal line at (1, 1, 1) is

r(t) = ⟨1, 1, 1⟩+ t⟨−1, 2, 2⟩ = ⟨1− t, 1 + 2t, 1 + 2t⟩.

We compute ⟨−1, 2, 2⟩ × ⟨2,−3, 5⟩ = ⟨16, 9,−1⟩. The tangent line to the intersection curve
at (1, 1, 1) is ⟨1 + 16t, 1 + 9t, 1− t⟩.

3. Find the local maxima, minima, and saddle points of the function z = (x2 + y2)e−y.

Solution: Compute the gradient of z = z(x, y), and then set it equal to zero to get:

∇z(x, y) = ⟨2xe−y,−x2e−y + 2ye−y − y2e−y⟩ = ⟨0, 0⟩.

The only critical points are (0, 0) and (0, 2). At these points, we compute the Hessian of z:

Hessz(0, 0) =

(
2 0
0 2

)
, Hessz(0, 2) =

(
2e−2 0
0 −2e−2

)
.

Note that at (0, 2), the determinant of the Hessian is negative, which means it is a saddle
point. At (0, 0), the determinant is positive and the first entry of the first row is
positive, which means it is a local minimum.
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4. Identify the maximum and minimum values attained by z = x2y−2x2 within the triangle
T bounded by the points P (0, 0), Q(2, 0), and R(0, 4).

Solution: First, we check for critical points in the interior of the triangle. The gradient
of z is ∇z(x, y) = ⟨2xy − 4x, x2⟩, but this only vanishes along the boundary of the triangle
(where x = 0), so we move on to analyze the boundary.
From P to Q, the function z equals −2x2, 0 ≤ x ≤ 2, which has a maximum of 0 at 0 and a
minimum of −8 at 2.
From P to R, the function z is identically zero.
From Q to R, y = −2x+4, so the function z becomes z = x2(−2x+4)− 2x2 = −2x3 +2x2,
0 ≤ x ≤ 2. Using Calc I tools, we discover that in this interval, z has a minimum of −8 at
x = 2 and a maximum of 8/27 at x = 2/3.
Comparing all these results, we conclude that on the whole triangle (including boundaries),
the function reaches a global maximum of 8/27 at (2/3, 8/3) and a global min of −8 at (2, 0).
5. Identify the maximum and minimum values attained by z = 4x2 − y2 + 1 within the
region R bounded by the curve 4x2 + y2 = 16.

Solution: First, we check for critical points in the interior of the region. We have ∇z =
⟨8x,−2y⟩, so the only critical point is (0, 0); but the Hessian at (0, 0) has negative determi-
nant, hence (0, 0) is not a maximum, nor a minimum.
Now, we check for critical points along the boundary. The boundary consists of those points
(x, y) such that g(x, y) = 0, where g(x, y) = 4x2 + y2 − 16. So z = 4x2 − (16 − 4x2) + 1 =
8x2 − 15, x ∈ [−2, 2]. Then we see readily zmax = 17 and zmin = −15.

6. Use Lagrange multiplier to maximize f(x, y, z) = xyz subject to x2 + 2y2 + 3z2 =
9, assuming that x, y, and z are nonnegative. Explain why the extremum you find is a
maximum.

Solution: The gradient of f is
∇f = ⟨yz, xz, xy⟩ .

Let g = x2+2y2+3z2, then ∇g = ⟨2x, 4y, 6z⟩. The system of equations we get by Lagrange
multipliers is thus

yz = 2λx, xz = 4λy, xy = 6λz, x2 + 2y2 + 3z2 = 9

If we assume x, y, z are nonzero we then have

λ =
yz

2x
=

xz

4y
=

xy

6z

x2 + 2y2 + 3z2 = 3x2 = 9 =⇒ x2 = 3 =⇒ x = ±
√
3

Then we have y = ±
√

3

2
and z = ±1. So we get 8 solutions.

(
√
3,

√
3

2
, 1), (−

√
3,

√
3

2
, 1), (

√
3,−

√
3

2
, 1), (

√
3,

√
3

2
,−1), (

√
3,−

√
3

2
,−1),

(−
√
3,−

√
3

2
, 1), (−

√
3,

√
3

2
,−1), (−

√
3,−

√
3

2
,−1).

If x = 0, then we get solutions (0, 0,
√
3), (0, 0,−

√
3), (0,

√
9
2
, 0), (0,−

√
9
2
, 0) (in those

cases λ = 0.) If y = 0, then we get solutions (0, 0,
√
3), (0, 0,−

√
3), (3, 0, 0), (−3, 0, 0) (in

those cases λ = 0.) If z = 0, then we get solutions (0,
√

9
2
, 0), (0,−

√
9
2
, 0), (3, 0, 0), (−3, 0, 0)

(in those cases λ = 0.) Evaluate f(x, y, z) = xyz at those points and we have 3 possible

outputs ± 3√
2
, 0. Hence we conclude that the maximum is 3√

2
and in particular it is attained

at (
√
3,

√
3

2
, 1)
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