## Tutorial Worksheet

Show all your work.

1. Find the maximum value of the function $f(x, y, z)=x+2 y$ on the curve of intersection of the plane $x+y+z=1$ and the cylinder $y^{2}+z^{2}=4$.
2. The plane $x+y+2 z=2$ intersects the paraboloid $z=x^{2}+y^{2}$ in an ellipse. Find the points on this ellipse that are nearest to and farthest from the origin.
3. (a)Estimate the volume of the solid that lies below the surface $z=1+x^{2}+3 y$ and above the rectangle $R=[1,2] \times[0,3]$. Use a Riemann sum with $m=n=2$ and choose the sample points to be lower left corners.
(b)Use the Midpoint Rule to estimate the volume in part(a).
4. Evaluate the double integral $\iint_{R}(4-2 y) d A, R=[0,1] \times[0,1]$ by identifying it as the volume of a solid.
5. Calculate the iterated integral
(a) $\int_{0}^{2} \int_{0}^{\pi} r \sin ^{2}(\theta) d \theta d r$
(b) $\iint_{R} y e^{-x y} d A, R=[0,2] \times[0,3]$
6. Find the volume of the solid in the first octant bounded by the cylinder $z=16-x^{2}$ and the plane $y=5$.
