Tutorial Worksheet

Show all your work.

1. Find the maximum value of the function $f(x, y, z)=x+2 y$ on the curve of intersection of the plane $x+y+z=1$ and the cylinder $y^{2}+z^{2}=4$.

Solution: Basically, the problem asks to maximize f subject to two constraints:

$$
\begin{aligned}
& g(x, y, z)=x+y+z=1 \\
& h(x, y, z)=y^{2}+z^{2}=4
\end{aligned}
$$

Firstly, compute

$$
\begin{aligned}
& \nabla f(x, y, z)=\langle 1,2,0\rangle \\
& \nabla g(x, y, z)=\langle 1,1,1\rangle \\
& \nabla h(x, y, z)=\langle 0,2 y, 2 z\rangle
\end{aligned}
$$

By the method of Lagrange Multipliers, for some scalars λ, μ, we have

$$
\begin{aligned}
& 1=\lambda \\
& 2=\lambda+2 \mu y \\
& 0=\lambda+2 \mu z \\
& x+y+z=1 \\
& y^{2}+z^{2}=4
\end{aligned}
$$

By solving the equations, we obtain the points $(1,-\sqrt{2}, \sqrt{2})$ and $(1, \sqrt{2},-\sqrt{2})$. So then,

$$
\begin{aligned}
& f(1,-\sqrt{2}, \sqrt{2})=1-2 \sqrt{2} \\
& f(1, \sqrt{2},-\sqrt{2})=1+2 \sqrt{2}
\end{aligned}
$$

Thus, the maximum value of f is $1+2 \sqrt{2}$ on the curve of intersection.
2. The plane $x+y+2 z=2$ intersects the paraboloid $z=x^{2}+y^{2}$ in an ellipse. Find the points on this ellipse that are nearest to and farthest from the origin.
Solution: We need to find the extreme values of $f(x, y, z)=x^{2}+y^{2}+z^{2}$ subject to the two constraints $g(x, y, z)=x+y+2 z=2$ and $h(x, y, z)=x^{2}+y^{2}-z=0$.
$\nabla f=\langle 2 x, 2 y, 2 z\rangle, \nabla g=\langle 1,1,2\rangle$ and $\nabla h=\langle 2 x, 2 y,-1\rangle$.
Thus, we need

$$
\begin{aligned}
& 2 x=\lambda+2 \mu x \\
& 2 y=\lambda+2 \mu y \\
& 2 z=2 \lambda-\mu \\
& x+y+2 z=2 \\
& x^{2}+y^{2}-z=0 .
\end{aligned}
$$

By solving the equations, we obtain two points $\left(\frac{1}{2}, \frac{1}{2}, \frac{1}{2}\right)$ and $(-1,-1,2)$. Then we have $f\left(\frac{1}{2}, \frac{1}{2}, \frac{1}{2}\right)=\frac{3}{4}$ and $f(-1,-1,2)=6$. Thus $\left(\frac{1}{2}, \frac{1}{2}, \frac{1}{2}\right)$ is the point on $(-1,-1,2)$ is the one farthest from the origin.
3. (a)Estimate the volume of the solid that lies below the surface $z=1+x^{2}+3 y$ and above the rectangle $R=[1,2] \times[0,3]$. Use a Riemann sum with $m=n=2$ and choose the sample points to be lower left corners.
(b)Use the Midpoint Rule to estimate the volume in part(a).

Solution: (a)The surface is the graph of $f(x, y)=1+x^{2}+3 y$ and $\Delta A=\frac{1}{2} \cdot \frac{3}{2}=\frac{3}{4}$, so we estimate

$$
\begin{aligned}
& V=\iint_{R}\left(1+x^{2}+3 y\right) d A \approx \sum_{i=1}^{2} \sum_{j=1}^{2} f\left(x_{i j}^{*}, y_{i j}^{*}\right) \Delta A \\
= & f(1,0) \Delta A+f\left(1, \frac{3}{2}\right) \Delta A+f\left(\frac{3}{2}, 0\right) \Delta A+f\left(\frac{3}{2}, \frac{3}{2}\right) \Delta A \\
= & 2\left(\frac{3}{4}\right)+\frac{13}{2}\left(\frac{3}{4}\right)+\frac{13}{4}\left(\frac{3}{4}\right)+\frac{31}{4}\left(\frac{3}{4}\right)=\frac{117}{8}=14.625
\end{aligned}
$$

$$
\begin{align*}
& V=\iint_{R}\left(1+x^{2}+3 y\right) d A \approx \sum_{i=1}^{2} \sum_{j=1}^{2} f\left(\bar{x}_{i}, \bar{x}_{j}\right) \Delta A \tag{b}\\
= & f\left(\frac{5}{4}, \frac{3}{4}\right) \Delta A+f\left(\frac{5}{4}, \frac{9}{4}\right) \Delta A+f\left(\frac{7}{4}, \frac{3}{4}\right) \Delta A+f\left(\frac{7}{4}, \frac{9}{4}\right) \Delta A \\
= & \frac{77}{16}\left(\frac{3}{4}\right)+\frac{149}{16}\left(\frac{3}{4}\right)+\frac{101}{16}\left(\frac{3}{4}\right)+\frac{173}{16}\left(\frac{3}{4}\right)=\frac{375}{16}=23.4375
\end{align*}
$$

4. Evaluate the double integral $\iint_{R}(4-2 y) d A, R=[0,1] \times[0,1]$ by identifying it as the volume of a solid.
Solution: $z=f(x, y)=4-2 y \geq 0$ for $0 \leq y \leq 1$. Thus the integral represents the volume of that part of the rectangular solid $[0,1] \times[0,1] \times[0,4]$ which lies below the plane $z=4-2 y$.

So

$$
\iint_{R}(4-2 y) d A=(1)(1)(2)+\frac{1}{2}(1)(1)(2)=3
$$

5. Calculate the iterated integral
(a) $\int_{0}^{2} \int_{0}^{\pi} r \sin ^{2}(\theta) d \theta d r$
(b) $\iint_{R} y e^{-x y} d A, R=[0,2] \times[0,3]$

Solution:

(a) $\int_{0}^{2} \int_{0}^{\pi} r \sin ^{2} \theta d \theta d r=\int_{0}^{2} r d r \int_{0}^{\pi} \sin ^{2} \theta d \theta=\int_{0}^{2} r d r \int_{0}^{\pi} \frac{1}{2}(1-\cos 2 \theta) \theta d \theta$

$$
=\left[\frac{1}{2} r^{2}\right]_{0}^{2} \cdot \frac{1}{2}\left[\theta-\frac{1}{2} \sin 2 \theta\right]_{0}^{\pi}=\pi
$$

(b) $\iint_{R} y e^{-x y} d A=\int_{0}^{3} \int_{0}^{2} y e^{-x y} d x d y=\int_{0}^{3}\left[-e^{-x y}\right]_{x=0}^{x=2} d y=\int_{0}^{3}\left(-e^{-2 y}+1\right) d y=\left[\frac{1}{2} e^{-2 y}+y\right]_{0}^{3}$

$$
=\frac{1}{2} e^{-6}+\frac{5}{2}
$$

6. Find the volume of the solid in the first octant bounded by the cylinder $z=16-x^{2}$ and the plane $y=5$.
Solution: The cylinder intersects the $x y$-plane along the line $x=4$, so in the first octant, the solid lies below the surface $z=16-x^{2}$ and above the rectangle $R=[0,4] \times[0,5]$ in the $x y$-plane.

$$
V=\int_{0}^{5} \int_{0}^{4}\left(16-x^{2}\right) d x d y=\int_{0}^{4}\left(16-x^{2}\right) d x \int_{0}^{5} d y=\left[16 x-\frac{1}{3} x^{3}\right]_{0}^{4}[y]_{0}^{5}=\frac{640}{3}
$$

