Worksheet 7 Solutions, Math 10560

1. Show that

$$
\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} e^{-\left(x^{2}+y^{2}\right)} d A=\pi
$$

and deduce that $\int_{-\infty}^{\infty} e^{-x^{2}} d x=\sqrt{\pi}$.

Solution:

We convert to polar coordinates, remembering that $d x d y$ becomes $r d r d \theta$:

$$
\int_{0}^{2 \pi} \int_{0}^{\infty} e^{-r^{2}} r d r d \theta
$$

The extra r allows us to use u-substitution. We take $u=r^{2}$, so that $d u=2 r d r$. This yields

$$
\pi \int_{0}^{\infty} e^{-u} d u=\left.\pi e^{-u}\right|_{0} ^{\infty}=\pi
$$

In rectangular coordinates, we can rewrite the integral as

$$
\int_{-\infty}^{\infty} e^{-x^{2}} d x \cdot \int_{-\infty}^{\infty} e^{-y^{2}} d y
$$

whereby

$$
\int_{-\infty}^{\infty} e^{-x^{2}} d x=\sqrt{\pi}
$$

2. Find the mass of the tetrahedron with points given by $(0,0,0),(2,0,0),(0,3,0),(0,0,1)$ with density function $\rho(x, y, z)=x$.

Solution:

First, we need to find the equation of the plane containing the points $(2,0,0),(0,3,0)$ and $(0,0,1)$. The normal vector is given by the cross product of the two vectors

$$
\langle 2,0,-1\rangle \times\langle 0,3,-1\rangle=\langle 3,2,6\rangle
$$

which gives the equation for the plane as

$$
3 x+2 y+6 z=6
$$

Thus, the triple integral computing the mass is given by

$$
m=\int_{0}^{2} \int_{0}^{3-\frac{3}{2} x} \int_{0}^{1-\frac{1}{2} x-\frac{1}{3} y} x d z d y d x
$$

Immediately, this becomes

$$
\int_{0}^{2} \int_{0}^{3-\frac{3}{2} x} x\left(1-\frac{1}{2} x-\frac{1}{3} y\right) d y d x
$$

which becomes

$$
\int_{0}^{2} \frac{3}{8} x(x-2)^{2} d x=\frac{1}{2}
$$

3. Find the mass and center of mass of the solid E given by $z=1-y^{2}$ and the planes $x+z=1, x=0$, and $z=0$ and constant density ρ.

Solution:

We will just set up the integrals. Once we set up the integral it will be easy to figure out the integrals for the moments. Supposing that z and y are fixed, then x-coordinate can vary between the $y z$-plane and the pane given by $x+z=1$, i.e. x can vary between 0 and $1-z$. This tells us that the first part of the triple integral for the mass will be given by

$$
\int_{0}^{1-z} \rho d x
$$

Next, suppose that y has been fixed. Then z can vary between 0 and the value $1-y^{2}$. This tells us that the next part of the triple integral is

$$
\int_{0}^{1-y^{2}} \int_{0}^{1-z} \rho d x d z
$$

Since y just varies between -1 and 1 , the triple integral for the mass is

$$
m=\int_{-1}^{1} \int_{0}^{1-y^{2}} \int_{0}^{1-z} \rho d x d z d y
$$

The formulas for the moments are then given by the usual formulas, i.e. the x-moment is

$$
M_{y z}=\int_{-1}^{1} \int_{0}^{1-y^{2}} \int_{0}^{1-z} \rho x d x d z d y
$$

4. Find the mass and center of mass of the solid S bounded by the parabloid $z=4 x^{2}+4 y^{2}$ and the plane $z=a$ for $a>0$, assuming that S has constant density K.

Solution:

We will use cylindrical coordinates. By the symmmetry of the parabloid, θ always varies between 0 and 2π. For a fixed z, the radius r can vary between 0 and $\frac{1}{2} \sqrt{z}$, since the upper bound for r is given by $z=4 r^{2}$. So the integral for the mass is

$$
\int_{0}^{2 \pi} \int_{0}^{a} \int_{0}^{\frac{1}{2} \sqrt{z}} K r d r d z d \theta=\left.2 \pi \int_{0}^{a} \frac{1}{2} K r^{2}\right|_{0} ^{\frac{1}{2} \sqrt{z}} d z=\frac{\pi}{4} \int_{0}^{2} K z d z=\frac{K a^{2} \pi}{8}
$$

The symmetry of the volume tells us that the center of mass will have x - and y components zero. So we just need to compute

$$
M_{x y}=\int_{0}^{2 \pi} \int_{0}^{a} \int_{0}^{\frac{1}{2} \sqrt{z}} K z r d r d z d \theta=\frac{K \pi a^{3}}{12}
$$

So that the center of mass is

$$
\left(0,0, \frac{2 a}{3}\right)
$$

