Math 20550 Calculus III Tutorial
Name: \qquad March 31, 2016

Tutorial Worksheet

Show all your work.

1. Evaluate (using spherical coordinates)

$$
\iiint_{E} d V
$$

where E is the solid that lies within $\left(x^{2}+y^{2}+z^{2}\right)^{2}=8 z$.
2. Compute the volume of the solid defined by

$$
x^{2}+y^{2}+z^{2}-2 z \leq 0
$$

and

$$
x^{2}+y^{2} \leq \frac{3}{2} z
$$

(Use triple integrals in spherical coordinates. You can use the fact $\int \frac{\cos ^{3} x}{\sin ^{5} x} d x=-\frac{\cot ^{4} x}{4}+C$.)
3. Let the parallelogram D be defined by

$$
\begin{gathered}
5 \geq x+2 y \geq 2, \\
1 \geq y-x \geq-2 .
\end{gathered}
$$

Compute

$$
\iint_{D} 2 d A .
$$

(Hint: Use change of variable: $u=x+2 y, v=y-x$. So $x=\frac{u-2 v}{3}, y=\frac{u+v}{3}$.)
4. Let D be the region in the first quadrant that is defined by

$$
\begin{gathered}
1 \geq y^{2}-x^{2} \geq 0 \\
4 \geq x y \geq 3
\end{gathered}
$$

Use change of variable to compute the double integral

$$
\iint_{D}\left(y^{2}-x^{2}\right)^{x y}\left(x^{2}+y^{2}\right) d A .
$$

(Hint: let $u=y^{2}-x^{2}, v=x y$. Using implicit differentiation we can obtain (try verifying one of them) $\frac{\partial x}{\partial u}=-\frac{x}{2\left(y^{2}+x^{2}\right)}, \frac{\partial y}{\partial u}=\frac{y}{2\left(y^{2}+x^{2}\right)}, \frac{\partial x}{\partial v}=\frac{y}{x^{2}+y^{2}}, \frac{\partial y}{\partial v}=\frac{x}{x^{2}+y^{2}}$.)

