Math 20550 Calculus III Tutorial Name:
March 31, 2016

Tutorial Worksheet

Show all your work.
1. Evaluate (using spherical coordinates)
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where F is the solid that lies within (22 + y? + 2%)? = 8z.

Solution: Write the equation (22 + y? + 2?)? = 8z in spherical coordinate one gets

p = /8cos .

On and within the surface (2 + y? + 2?)? = 8z, we have z > 0. And also note the surface
passes through the origin. Therefore one concludes that the limit for p is 0 < p < 24/cos ¢
and the limit for ¢ is 0 < ¢ < 7. Therefore we compute
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2. Compute the volume of the solid defined by
Py 22 —-22<0

and

x2+y2§ Z.
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(Use triple integrals in spherical coordinates. You can use the fact [ %dm = —% +C\)

Solution: Rewrite the inequalities in spherical coordinate we see the solid is
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When 0 < ¢ < 3 we have 3502 > 2cos ¢ and when 5S¢ < 5 we have 2cos ¢ > 352"
Therefore we have
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3. Let the parallelogram D be defined by
d>x+2y>2,

1>2y—x> -2
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Compute

(Hint: Use change of variable: u =z + 2y, v =y —z. So x = 4222y = “I¥ )
Solution: Let u =2+ 2y, v =y —x. So x = “—_32”7y = UTJFU
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So by change of variable we get
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4. Let D be the region in the first quadrant that is defined by
1>y —a2?>0,

4> xy > 3.

Use change of variable to compute the double integral
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(Hint: let u = y? — 22, v = xy. Using implicit differentiation we can obtain (try verifying one
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Solution: Let u = y? — 22, v = xv.

Using implicit differentiation we obtain 57 = S u = AP
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So by change of variable, the integral is
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