\qquad

Tutorial Worksheet

Show all your work.

1. Evaluate (using spherical coordinates)

$$
\iiint_{E} d V
$$

where E is the solid that lies within $\left(x^{2}+y^{2}+z^{2}\right)^{2}=8 z$.
Solution: Write the equation $\left(x^{2}+y^{2}+z^{2}\right)^{2}=8 z$ in spherical coordinate one gets

$$
\rho=\sqrt[3]{8 \cos \phi}
$$

On and within the surface $\left(x^{2}+y^{2}+z^{2}\right)^{2}=8 z$, we have $z \geq 0$. And also note the surface passes through the origin. Therefore one concludes that the limit for ρ is $0 \leq \rho \leq 2 \sqrt[3]{\cos \phi}$ and the limit for ϕ is $0 \leq \phi \leq \frac{\pi}{2}$. Therefore we compute

$$
\int_{0}^{2 \pi} \int_{0}^{\frac{\pi}{2}} \int_{0}^{2 \sqrt[3]{\cos \phi}} \rho^{2} \sin \phi d \rho d \phi d \theta=\frac{8 \pi}{3}
$$

2. Compute the volume of the solid defined by

$$
x^{2}+y^{2}+z^{2}-2 z \leq 0
$$

and

$$
x^{2}+y^{2} \leq \frac{3}{2} z
$$

(Use triple integrals in spherical coordinates. You can use the fact $\int \frac{\cos ^{3} x}{\sin ^{5} x} d x=-\frac{\cot ^{4} x}{4}+C$.)
Solution: Rewrite the inequalities in spherical coordinate we see the solid is

$$
\rho \geq 0, \rho \leq 2 \cos \phi, \rho \leq \frac{3 \cos \phi}{2 \sin ^{2} \phi}
$$

When $0 \leq \phi \leq \frac{\pi}{3}$ we have $\frac{3 \cos \phi}{2 \sin ^{2} \phi} \geq 2 \cos \phi$ and when $\frac{\pi}{3} \leq \phi \leq \frac{\pi}{2}$ we have $2 \cos \phi \geq \frac{3 \cos \phi}{2 \sin ^{2} \phi}$. Therefore we have

$$
\begin{gathered}
V=\int_{0}^{2 \pi} \int_{0}^{\frac{\pi}{3}} \int_{0}^{2 \cos \phi} \rho^{2} \sin \phi d \rho d \phi d \theta \\
+\int_{0}^{2 \pi} \int_{\frac{\pi}{3}}^{\frac{\pi}{2}} \int_{0}^{\frac{3 \cos \phi}{2 \sin ^{2} \phi}} \rho^{2} \sin \phi d \rho d \phi d \theta \\
=\frac{5 \pi}{4}+\frac{\pi}{16}=\frac{21 \pi}{16}
\end{gathered}
$$

3. Let the parallelogram D be defined by

$$
\begin{gathered}
5 \geq x+2 y \geq 2, \\
1 \geq y-x \geq-2 .
\end{gathered}
$$

Compute

$$
\iint_{D} 2 d A .
$$

(Hint: Use change of variable: $u=x+2 y, v=y-x$. So $x=\frac{u-2 v}{3}, y=\frac{u+v}{3}$.)
Solution: Let $u=x+2 y, v=y-x$. So $x=\frac{u-2 v}{3}, y=\frac{u+v}{3}$.

$$
\left|\frac{\partial(x, y)}{\partial(u, v)}\right|=\frac{1}{3} .
$$

So by change of variable we get

$$
\int_{2}^{5} \int_{-2}^{1} \frac{2}{3} d v d u=6
$$

4. Let D be the region in the first quadrant that is defined by

$$
\begin{gathered}
1 \geq y^{2}-x^{2} \geq 0 \\
4 \geq x y \geq 3
\end{gathered}
$$

Use change of variable to compute the double integral

$$
\iint_{D}\left(y^{2}-x^{2}\right)^{x y}\left(x^{2}+y^{2}\right) d A
$$

(Hint: let $u=y^{2}-x^{2}, v=x y$. Using implicit differentiation we can obtain (try verifying one of them) $\frac{\partial x}{\partial u}=-\frac{x}{2\left(y^{2}+x^{2}\right)}, \frac{\partial y}{\partial u}=\frac{y}{2\left(y^{2}+x^{2}\right)}, \frac{\partial x}{\partial v}=\frac{y}{x^{2}+y^{2}}, \frac{\partial y}{\partial v}=\frac{x}{x^{2}+y^{2}}$.)
Solution: Let $u=y^{2}-x^{2}, v=x y$.
Using implicit differentiation we obtain $\frac{\partial x}{\partial u}=-\frac{x}{2\left(y^{2}+x^{2}\right)}, \frac{\partial y}{\partial u}=\frac{y}{2\left(y^{2}+x^{2}\right)}$,
$\frac{\partial x}{\partial v}=\frac{y}{x^{2}+y^{2}}, \frac{\partial y}{\partial v}=\frac{x}{x^{2}+y^{2}}$.

$$
\left|\frac{\partial(x, y)}{\partial(u, v)}\right|=\frac{1}{2\left(x^{2}+y^{2}\right)}
$$

So by change of variable, the integral is

$$
\frac{1}{2} \int_{3}^{4} \int_{0}^{1} u^{v} d u d v=\frac{1}{2} \ln \frac{5}{4}
$$

