Math 20550 Calculus III Tutorial April 7, 2016

Name: _____

Tutorial Worksheet

Show all your work.

1. Evaluate $\int_C x^2 dx + y^2 dy$, where C consists of the arc of the circle $x^2 + y^2 = 4$ from (2,0) to (0,2) followed by the line segment from (0,2) to (4,3).

2. Compute $\int_C x^2 ds$, C is the intersection of the surface $x^2 + y^2 + z^2 = 4$ and the plane $z = \sqrt{3}$.

3. Evaluate $\int_C \nabla f d\mathbf{r}$ where $f(x, y, z) = \cos \pi x + \sin \pi y - xyz$ and *C* is any path that starts at $\left(1, \frac{1}{2}, 2\right)$ and ends at (2, 1, -1).

4. Find a function f such that $\mathbf{F} = \nabla f$ and evaluate $\int_C \mathbf{F} \cdot d\mathbf{r}$ along the curve C. Where $\mathbf{F}(x, y, z) = (y^2 z + 2xz^2)\mathbf{i} + 2xyz\mathbf{j} + (xy^2 + 2x^2z)\mathbf{k}$, C: $x = \sqrt{t}$, y = t + 1, $z = t^2$, $0 \le t \le 1$.