\qquad

Tutorial Worksheet

Show all your work.

1. Evaluate $\int_{C} x^{2} d x+y^{2} d y$, where C consists of the arc of the circle $x^{2}+y^{2}=4$ from $(2,0)$ to $(0,2)$ followed by the line segment frome $(0,2)$ to $(4,3)$.

Solution: We need to parametrize the curve. First, setting $C=C_{1}+C_{2}$, where C_{1} is the arc of the circle, and C_{2} is the line segment.

On $C_{1}: x=2 \cos t, d x=-2 \sin t d t, y=2 \sin t, d y=2 \cos t d t, 0 \leq t \leq \frac{\pi}{2}$.
On $C_{2}: x=4 t, d x=4 d t, y=2+t, d y=d t, 0 \leq t \leq 1$.
Then

$$
\begin{gathered}
\int_{C} x^{2} d x+y^{2} d y=\int_{C_{1}} x^{2} d x+y^{2} d y+\int_{C_{2}} x^{2} d x+y^{2} d y \\
=\int_{0}^{\frac{\pi}{2}}(2 \cos t)^{2}(-2 \sin t d t)+(2 \sin t)^{2}(2 \cos t d t)+\int_{0}^{1}(4 t)^{2}(4 d t)+(2+t)^{2} d t \\
=8 \int_{0}^{\frac{\pi}{2}}\left(-\cos ^{2} t \sin t+\sin ^{2} t \cos t\right) d t+\int_{0}^{1}\left(65 t^{2}+4 t+4\right) d t=\frac{83}{3}
\end{gathered}
$$

2. Compute $\int_{C} x^{2} d s, C$ is the intersection of the surface $x^{2}+y^{2}+z^{2}=4$ and the plane $z=\sqrt{3}$.

Solution: We need to parametrize the curve. First, setting $z=\sqrt{3}$ in the equation of the surface, we get $x^{2}+y^{2}+3=4$ or $x^{2}+y^{2}=1$, which is a circle of radius 1 . Therefore, we can parametrize x and y as a circle, with z as a constant $\sqrt{3}$.

Let $x=\cos t, y=\sin t, z=\sqrt{3}, 0 \leqslant t \leqslant 2 \pi$.

$$
\begin{gathered}
d s=\sqrt{x^{\prime 2}(t)+y^{\prime 2}(t)+z^{\prime 2}(t)} d t=d t \\
\int_{C} x^{2} d s \\
=\int_{0}^{2 \pi} \cos ^{2} t d t \\
=4 \int_{0}^{\pi / 2} \cos ^{2} t d t \\
=\pi
\end{gathered}
$$

3. Evaluate $\int_{C} \nabla f d \mathbf{r}$ where $f(x, y, z)=\cos \pi x+\sin \pi y-x y z$ and C is any path that starts at $\left(1, \frac{1}{2}, 2\right)$ and ends at $(2,1,-1)$.

Solution: By the Fundamental Theorem for the line integral

$$
\begin{gathered}
\int_{C} \nabla f d \mathbf{r} \\
=f(2,1,-1)-f\left(1, \frac{1}{2}, 2\right) \\
=\cos 2 \pi+\sin \pi+2-\left(\cos \pi+\sin \frac{\pi}{2}-1\right) \\
=4
\end{gathered}
$$

4. Find a function f such that $\mathbf{F}=\nabla f$ and evaluate $\int_{C} \mathbf{F} \cdot d \mathbf{r}$ along the curve C. Where $\mathbf{F}(x, y, z)=\left(y^{2} z+2 x z^{2}\right) \mathbf{i}+2 x y z \mathbf{j}+\left(x y^{2}+2 x^{2} z\right) \mathbf{k}, C: x=\sqrt{t}, y=t+1, z=t^{2}, 0 \leq t \leq 1$.

Solution: $f_{x}(x, y, z)=y^{2} z+2 x z^{2}$ implies $f(x, y, z)=x y^{2} z+x^{2} z^{2}+g(y, z)$ and so $f_{y}(x, y, z)=$ $2 x y z+g_{y}(y, z)$. But $f_{y}(x, y, z)=2 x y z$ so $g_{y}(y, z)=0$. Just let $g(y, z)=h(z)$. Thus, $f(x, y, z)=x y^{2} z+x^{2} z^{2}+h(z)$ and $f_{z}(x, y, z)=x y^{2}+2 x^{2} z+h^{\prime}(z)$. But $f_{z}(x, y, z)=x y^{2}+2 x^{2} z$, so $h^{\prime}(z)=0$. $h(z)=K$. Hence $f(x, y, z)=x y^{2} z+x^{2} z^{2}$ (taking $K=0$).
$t=0$ corresponds to the point $(0,1,0)$ and $t=1$ corresponds to $(1,2,1)$, so by the Fundamental Theorem for line integrals, we have

$$
\int_{C} \mathbf{F} \cdot d \mathbf{r}=f(1,2,1)-f(0,1,0)=5
$$

