Worksheet 7, Math 10560

1. Calculate $\int_{C} \mathbf{F} \cdot d \mathbf{r}$ where $\mathbf{F}=\left\langle x^{2}+y, 3 x-y^{2}\right\rangle$ and C is the positively oriented boundary curve of a region D whose area is 8 .
2. Consider the vector field $\mathbf{F}=\langle y,-x, 0\rangle$. Determine if this vector field is conservative. Compute the line integral $\int_{C} \mathbf{F} \cdot d \mathbf{r}$ where C is the unit circle.
3. Compute the line integral $\int_{C} x y^{2} d x+2 x^{2} y d y$ when C is the triangle with vertices $(0,0),(2,2)$ and $(2,4)$.
4. Show that for a function f and a vector field \mathbf{F} we have the following 'product rule' for the divergence

$$
\nabla \cdot(f \mathbf{F})=f \nabla \cdot \mathbf{F}+\mathbf{F} \cdot \nabla f
$$

