Worksheet 7, Math 10560

1. Calculate $\int_{C} \mathbf{F} \cdot d \mathbf{r}$ where $\mathbf{F}=\left\langle x^{2}+y, 3 x-y^{2}\right\rangle$ and C is the positively oriented boundary curve of a region D whose area is 8 .
Solution: We will use Green's theorem to compute this integral. Note that $P(x, y)=$ $x^{2}+y$ and $Q(x, y)=3 x-y^{2}$. So by Green's theorem we get

$$
\int_{C} \mathbf{F} \cdot d \mathbf{r}=\iint_{D} \partial_{x} Q-\partial_{y} P d A=\iint_{D} 3-1 d A=2 \cdot 8=16
$$

where we use the fact that $\iint_{D} d A=8$.
2. Consider the vector field $\mathbf{F}=\langle y,-x, 0\rangle$. Draw a picture of this vector field and determine if this vector field is conservative. Compute the line integral $\int_{C} \mathbf{F} \cdot d \mathbf{r}$ where C is the unit circle.

Solution: The vector field is not conservative as its curl is not zero:

$$
\nabla \times \mathbf{F}=\left\langle 0,0, \partial_{x}(-x)-\partial_{y}(y)\right\rangle=\langle 0,0,-2\rangle
$$

To compute the integral $\int_{C} \mathbf{F} \cdot d \mathbf{r}$ we will use Green's theorem. Note that the the z component of the curl $\nabla \times \mathbf{F}$ is used in Green's theorem

$$
\int_{C} \mathbf{F} \cdot d \mathbf{r}=\iint_{D}-2 d A=-2 \pi
$$

where D is the unit disc.
3. Compute the line integral $\int_{C} x y^{2} d x+2 x^{2} y d y$ when C is the triangle with vertices $(0,0),(2,2)$ and $(2,4)$.
Solution: Note that $P(x, y)=x y^{2}$ and $Q(x, y)=2 x^{2} y$. So to use Green's theorem we compute

$$
\partial_{x} Q-\partial_{y} P=4 x y-2 x y=2 x y
$$

so that

$$
\int_{C} x y^{2} d x+2 x^{2} y d y=\iint_{T} 2 x y d A
$$

where T denotes the interior of C. Expanding the right hand side gives

$$
\iint_{T} 2 x y d A=\int_{0}^{2} \int_{x}^{2 x} 2 x y d y d x=\left.\int_{0}^{2} x y^{2}\right|_{x} ^{2 x} d x=\int_{0}^{2} 3 x^{3} d x=\frac{3}{4} 8=6
$$

4. Show that for a function f and a vector field \mathbf{F} we have the following 'product rule' for the divergence

$$
\nabla \cdot(f \mathbf{F})=f \nabla \cdot \mathbf{F}+\mathbf{F} \cdot \nabla f
$$

Solution: Let us write $\mathbf{F}=\langle P, Q, R\rangle$. We start by expanding $\nabla \cdot(f \mathbf{F})$. Note that $f \mathbf{F}=\langle f P, f Q, f R\rangle$. So

$$
\nabla \cdot(f \mathbf{F})=\partial_{x}(f P)+\partial_{y}(f Q)+\partial_{x}(f R)
$$

Using the Leibniz rule gives

$$
\nabla \cdot(f \mathbf{F})=\left(\partial_{x} f\right) P+f \partial_{x} P+\left(\partial_{y} f\right) Q+f \partial_{y} Q+\left(\partial_{z} f\right) R+f \partial_{z} R
$$

Rearranging these terms gives

$$
\nabla \cdot(f \mathbf{F})=\left[\partial_{x}(f) P+\left(\partial_{y} f\right) Q+\left(\partial_{z} f\right) R\right]+f\left[\partial_{x} P+\partial_{y} Q+\partial_{z} R\right]
$$

We easily identify the first term as $\nabla(f) \cdot \mathbf{F}$ and the second term as $f \nabla \cdot \mathbf{F}$. This gives the desired equality.

