Math 43900 Fall 2017 Problem Solving
 Lecture 1, August 22

Andrei Jorza

The many stages of problem solving

1. I know this by heart. E.g., $(\ln x)^{\prime}=\frac{1}{x}$.
2. I've seen problems exactly like this. E.g., $\int \frac{d x}{\sqrt{x^{2}-x+15}}$.
3. I've seen many time the methods necessary to do this problem. E.g., compute $\left(x^{x^{x}}\right)^{\prime}$.
4. Perhaps I can reinterpret/simplify the problem to something I've seen before. Questions: do I have to technical comfort to do this? Or the inventivity?
5. This seems like a geometry problem but it might really be something else.
6. What idea/trick/perspective could the author of the problem have been aiming for? Remember: this problem has been done by someone in a reasonable amount of time. It's not a research problem. This can be extremely helpful.
7. "How do I" questions. How do I choose a problem to work on? How do I brainstorm for (or build a repository of) helpful ideas? What do I do when I get stuck?
8. I don't even understand what the problem is saying.
9. Uncontrolled laughter at the absurdity and impossibility of the problem.

Some exercises.

1. Determine all prime numbers with n with $k \geq 3$ digits (in base 10) with the following property: no matter how you eliminate at most $k-2$ digits from the decimal expansion of n, the resulting number is still prime.
2. For what positive integers n is $\sqrt{n+3}+\sqrt{n+\sqrt{n+3}}$ an integer?
3. You know $x y=6$ for reals $x, y>0$. If $x, y>2$ show that $x+y<5$.
4. A convex polygon $A_{1} A_{2} \ldots A_{n}$ has vertices with integral coordinates and all the vertices lie on a circle. You know that the squares of the side lengths of the polygon are integers divisible by a fixed odd positive integer n. Show that twice the area of the polygon is an integer divisible by n.
