Math 43900 Problem Solving
 Fall 2017
 Lecture 2 Exercises

Andrei Jorza

These problems are taken from the textbook, from past Putnam competitions, from Ravi Vakil's Putnam seminar notes and from Po-Shen Loh's Putnam seminar notes.

Proof by contradiction

1. Show that the equation $3^{y}+5^{z}=x^{2}+x+1$ has no integer solutions.
2. Three points A, B and C lie on a circle (ellipse). Show that the area of $A B C$ is maximized if and only if its centroid (i.e., its center of mass, or intersection of its three medians) coincides with the center of the circle (ellipse). (Putnam 1952)
3. A polynomial $P(X)=a_{n} X^{n}+a_{n-1} X^{n-1}+\cdots+a_{1} X+a_{0}$ with integral coefficients has a_{n}, a_{0} and $P(1)$ all odd integers. Show that $P(X)$ has no rational roots. (Putnam 1952)
4. The set $\mathcal{S} \subset \mathbb{Q}$ satisfies:
(a) \mathcal{S} is closed under addition and multiplication,
(b) $0 \notin \mathcal{S}$, and
(c) for any nonzero rational $q \in \mathbb{Q}$ exactly one of q and $-q$ belongs to \mathcal{S}.

Show that $\mathcal{S}=\mathbb{Q}_{>0}$.

Mathematical induction

Induction where you know what you need to show

1. Show that a $2^{n} \times 2^{n}$ board with one unit square removed can be tiled with corner tiles (a corner tiles has 3 unit square in an L shape).
2. Show that $3^{n} \geq n^{3}$ for all positive integers n. (AG 14)
3. Let $n \geq 6$ be an integer. Show that

$$
\left(\frac{n}{3}\right)^{n}<n!<\left(\frac{n}{2}\right)^{n}
$$

(AG 15)
4. Prove that any polygon (convex or not) can be dissected into triangles by interior diagonals. (AG 29)
5. Show that for any $n \geq 4$ an isosceles triangle with one angle of 120° can be dissected into n triangles similar to it. (AG 26)
6. Show that every positive integer can be written in the form $\pm 1^{2} \pm 2^{2} \pm \cdots \pm n^{2}$ for some $n \geq 1$ and some choice of signs.

Due next week

Write

Please write out clearly and concisely one of the following:

1. one problem from the ones I explained in class and one problem of your choosing that I did not cover in class OR
2. two problems that I did not cover in class.

Read

In preparation for next class, please read from the textbook sections 1.2 (induction) and 1.3 (the pigeonhole principle). I encourage you to work out on paper the examples the textbook presents: be an active participant in the presentation.

