
Math 43900 Problem solving, Fall 2017, Lecture 4 exercises.
These problems are taken from the textbook, from Ravi Vakil’s Putnam seminar notes, from David

Galvin’s problems and from Po-Shen Loh’s Putnam seminar notes.

Polynomials

Useful facts

1. If P (X) has root α then X − α | P (X), i.e., P (X) = (X − α)Q(X) for a polynomial Q(X). The root
α is a double root, i.e., it appears twice in the list of roots, if and only if P (α) = P ′(α) = 0.

2. If a polynomial with coefficients in C has infinitely many roots it must be the 0 polynomial. A variant
is that if P,Q are complex polynomials with P (z) = Q(z) for infinitely many values of z then P = Q.

3. If P (X) and Q(X) have the same (complex) roots then they differ by a scalar. In particular, if they
have the same leading coefficient then P = Q.

4. Remember from the quadratic formula that if X2 + aX + b = 0 has roots α and β then α + β = −a
and αβ = b. If P (X) = Xn + a1X

n−1 + a2X
n−2 + · · · + an−1X + an has roots α1, . . . , αn then for

1 ≤ r ≤ n
(−1)rar =

∑
i1<i2<...<ir

αi1αi2 · · ·αir (= sr)

which specializes to −a1 =
∑
i

αi(= s1), a2 =
∑

i<j αiαj(= s2), −a3 =
∑

i<j<k αiαjαk(= s3) and so

on until (−1)nan =
∏
αi(= sn). The sk are called the elementary symmetric polynomials in the

roots.

5. If A and B are two polynomials then you can divide with remainder: A(X) = B(X) · Q(X) + R(X)
with either R(X) = 0 or degR < degB. Using divisibilities you can show that the gcd of A and B is
the same as the gcd of B and R and then compute the gcd sequentially. We write (A,B) for the gcd.

6. This is Gauss’ lemma: If A and B are integer polynomials and A/B is a polynomial (necessarily with
rational coefficients) then it is an integer polynomial. In other words if B | A as rational polynomials
then B | A as integral polynomials.

7. If a matrix has entries which are polynomials then the determinant of the matrix is also a polynomial.
You can show this by induction using the fact that a determinant can be expanded in terms of rows
and minors.

8. This is the important Eisenstein irreducibility criterion, which we’ll prove when we do modular arith-
metic. Suppose P (X) = Xn + a1X

n−1 + · · ·+ an−1X + an is an integral polynomial and p is a prime
number such that p | a1, a2, . . . , an but p2 - an. Then P (X) is an irreducible polynomial.

9. Finally an input from Galois theory that’s useful: If a rational (or real or complex) polynomial
P (x1, x2, . . . , xn) doesn’t depend on the ordering of the variables x1, . . . , xn, i.e., no matter how you
permute them the final expression is the same, then P (x1, . . . , xn) can be written as a polynomial ratio-
nal (or real or complex) polynomial Q(s1, . . . , sn) where sk are the elementary symmetric polynomials.
E.g., x21x2 + x1x

2
2 + x21x3 + x1x

2
3 + x22x3 + x2x

2
3 = s1s2 − 3s3 (check this!).
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Problems with roots

1. Suppose P (X) is a monic polynomial with integer coefficients. Show that if P (X) has a rational root
α then α is in fact integral. [Roots of such polynomials are called algebraic integers.]

2. Let P (X) = Xn + a1X
n−1 + · · · + an−1X + an. If a1 + a3 + a5 + · · · and a2 + a4 + · · · are real

numbers show that P (1) and P (−1) are real numbers as well. As a follow-up: let α1, . . . , αn be the
roots of P (X) and suppose that Q(X) = Xn + b1X

n−1 + · · · bn−1X + bn has roots α2
1, . . . , α

2
n. Show

that b1 + b2 + · · ·+ bn is a real numbers.

3. For which real values of p and q are the roots of the polynomial X3− pX2 + 11X − q three consecutive
integers?

4. For which values of n ≥ 1 do there exist polynomials P (X) satisfying:

(a) P (k) = k for 1 ≤ k ≤ n,

(b) P (0) is an integer, and

(c) P (−1) = 2017?

5. (Putnam 2005) Find a non-zero polynomial P (X,Y ) such that P (btc, b2tc) = 0 for all real numbers t.
(Here btc indicates the greatest integer less than or equal to t.)

6. If P (X) is a real polynomial whose roots are all real and distinct and different from 0 show that
XP ′(X) + P (X) is a real polynomial with distinct real roots which are different from 0. As a follow-
up: show that XP ′′(X) + 3XP ′(X) + P (X) has distinct real roots. [Hint for the follow-up: apply the
first part twice.]

Problems with divisibilities

1. (Useful) Show that if m | n then Xm−1 | Xn−1. Also show that if m | n are odd then Xm+1 | Xn+1.
As a follow-up: show that if m and n are positive integers with gcd d then the polynomials Xm − 1
and Xn − 1 have gcd Xd − 1. [Hint: Show that if m = nq + r is division with remainder then
Xm − 1 = (Xn − 1)Q(X) +Xr − 1 is division with remainder.]

2. Show that in the product (1−X +X2 −X3 + · · ·+X100)(1 +X +X2 +X3 + · · ·+X100) when you
expand and collect terms X only appears to even exponents.

3. Show that the polynomial X3 − 2 is irreducible in Z[X].

4. Find all polynomials P (X) satisfying (X + 1)P (X) = (X − 2)P (X + 1).

5. Suppose p is a prime. Show that P (X) = Xp−1 + Xp−2 + · · · + X + 1 =
Xp − 1

X − 1
is an irreducible

polynomial. [Hint: Look at P (X + 1) and apply the Eisenstein irreducibility criterion.]

6. Show that (X − 1)(X − 2) · · · (X − n) − 1 is irreducible in Z[X]. [Hint: Show that if it factors as
P (X)Q(X) then P +Q has roots 1, 2, . . . , n.]

7. Suppose p is a prime ≡ 3 (mod 4). Show that (X2 + 1)n + p is irreducible over Z. [Hint: the condition
on p implies that X2 + 1 has no roots mod p.]

8. Let P (X) ∈ Z[X] be an irreducible polynomial such that |P (0)| is not a perfect square. Show that
P (X2) is also irreducible.
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