Math 30820 Honors Algebra 4 Homework 1

Andrei Jorza

Due Wednesday, 1/25/2017

Do 4 of the following questions. Some questions may be obligatory. Artin a.b.c means chapter a, section b, exercise c. You may use any problem to solve any other problem.

- 1. Determine, with proof, the minimal polynomial of $\sqrt{2} + \sqrt{3}$ over \mathbb{Q} .
- 2. Determine, with proof, the minimal polynomial of $\sqrt{2 + \sqrt{2 + \sqrt{2}}}$ over \mathbb{Q} .
- 3. Determine, with proof, the minimal polynomial of the element $\sqrt{X + \sqrt[p]{X}}$ over the PID $\mathbb{F}_p[X]$. Here p is a prime and $\mathbb{F}_p = \mathbb{Z}/p\mathbb{Z}$.
- 4. (Generalized Eisenstein criterion) Suppose R is a unique factorization domain and \mathfrak{p} is a prime ideal of R such that R/\mathfrak{p} is also a unique factorization domain. Let $P(X) \in R[X]$ be $P(X) = X^n + a_{n-1}X^{n-1} + \cdots + a_1X + a_0$. Show that if $a_0, \ldots, a_{n-1} \in \mathfrak{p}$ but $a_0 \notin \mathfrak{p}^2$ then P(X) is irreducible in R[X] (and therefore also in (Frac R)[X] by Gauss' lemma from last semester).
- 5. Suppose $R \subset S$ are rings. An element $\alpha \in S$ is said to be *integral over* R if $P(\alpha) = 0$ for some **monic** polynomial $P \in R[X]$. Suppose R is a unique factorization domain. Show that if $\alpha \in \operatorname{Frac} R$ is integral over R then $\alpha \in R$.
- 6. Suppose α is integral over a ring R. Show that $R[\alpha]$ (defined last semester as $\{P(\alpha) \mid P \in R[X]\}$) is in fact the set $\{a_0 + a_1\alpha + \dots + a_n\alpha^n \mid a_0, \dots, a_n \in R\}$ for some integer n.