
Math 30820 Honors Algebra 4

Homework 1

Andrei Jorza

Due Wednesday, 1/25/2017

Do 4 of the following questions. Some questions may be obligatory. Artin a.b.c means
chapter a, section b, exercise c. You may use any problem to solve any other problem.

1. Determine, with proof, the minimal polynomial of
√

2 +
√

3 over Q.

Proof. If α =
√

2 +
√

3 then (α −
√

2)2 = 3 and so α2 − 1 = 2α
√

2 which immediately implies that α
is a root of P (X) = X4 − 10X2 + 1. We need to show this is irreducible over Q. If it were reducible it
would be of the form P (X) = A(X)B(X). If degA = 1 this would imply that P has a rational root,
but the roots of P are ±

√
2 ±
√

3 which are not rational. Indeed, if this were the case, we’d get that
Q(
√

2) = Q(
√

3) and we saw last semester that these two are not isomorphic as rings. The only other
option is degA = degB = 2. But this would imply that the roots of A add up to a rational. But
pairwise sums of roots of P are ±2

√
2, ±2

√
3 and 0. The only option is if A has roots ±(

√
2 +
√

3)
and B has roots ±(

√
2−
√

3). But then the roots of A multiply out to 5 + 2
√

6 which is not rational.

Alternatively, A and B can be chosen in Z[X] by Gauss’ lemma. Then they’d have to be monic as P
is. So A = X2 + aX + b and B = X2 + cX + d. Multiplying out we’d get c = −a and bd = 1. But
then P = AB = (X2 + b)2 − a2X2 so we’d need 2b− a2 = −10. Since b = ±1 we immediately get that
there is no a ∈ Z satisfying the equation.

2. Determine, with proof, the minimal polynomial of

√
2 +

√
2 +
√

2 over Q.

Proof. As before the element satisfies the polynomial P (X) = ((X2 − 2)2 − 2)2 − 2. Expanding we
immediately apply Eisenstein with p = 2.

3. Determine, with proof, the minimal polynomial of the element
√
X + p

√
X over the PID Fp[X]. Here

p is a prime and Fp = Z/pZ.

Proof. The element α =
√
X + p

√
X satisfies the polynomial P (Y ) = (Y 2 − X)p − X. We’re in

characteristic p and from last semester we know that x 7→ xp is a ring homomorphism in this case
so P (Y ) = Y 2p − Xp − X. In Eisenstein we choose the prime X ∈ Fp[X]. Then X | −Xp − X but
X2 - −Xp −X so P (Y ) must be irreducible.

4. (Generalized Eisenstein criterion) Suppose R is a unique factorization domain and p is a prime ideal
of R such that R/p is also a unique factorization domain. Let P (X) ∈ R[X] be P (X) = Xn +
an−1X

n−1 + · · · + a1X + a0. Show that if a0, . . . , an−1 ∈ p but a0 /∈ p2 then P (X) is irreducible in
R[X] (and therefore also in (FracR)[X] by Gauss’ lemma from last semester).
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Proof. Consider π : R→ R/p be the natural ring homomorphism π(x) = x mod p. Then π : R[X]→
R/p[X] is also a ring homomorphism. If P were reducible, say, P (X) = A(X)B(X) then π(P ) =
π(A)π(B). But π(P ) = Xn by assumption and so π(A)π(B) = Xn. Since R/p is a UFD so is
R/p[X] and therefore π(A) = Xk and π(B) = Xn−k for some k between 1 and n − 1. But then
A(X)−Xk ∈ p[X] and B(X)−Xn−k ∈ p[X] and so A(0), B(0) ∈ p. But then P (0) = A(0)B(0) ∈ p2

contradicting the assumption.

5. Suppose R ⊂ S are rings. An element α ∈ S is said to be integral over R if P (α) = 0 for some monic
polynomial P ∈ R[X]. Suppose R is a unique factorization domain. Show that if α ∈ FracR is integral
over R then α ∈ R.

Proof. Write α = a/b with b 6= 0 and a, b ∈ R coprime. Suppose α satisfies the monic equation

αn + an−1α
n−1 + · · ·+ a1α+ a0 = 0

with ai ∈ R. Clearing denominators we get

an + an−1a
n−1b+ · · ·+ a1ab

n−1 + a0b
n = 0

which implies b | an. If b is a unit then α = a/b ∈ R. Otherwise let π be a prime factor of b. Then
π | an so π | a by primality, which contradicts the assumption that a and b are coprime.

6. Suppose α is integral over a ring R. Show that R[α] (defined last semester as {P (α) | P ∈ R[X]}) is
in fact the set {a0 + a1α+ · · ·+ anα

n | a0, . . . , an ∈ R} for some integer n.

Proof. Let P (X) = Xn+1 + bnX
n + · · · + b1X + b0 be a polynomial such that P (α) = 0. Denote

S = {a0 + a1α + · · · + anα
n | a0, . . . , an ∈ R} and note that S is closed under addition. Then

αn+1 = −(bnα
n + · · · + b1α + b0) ∈ S. We need to show that Q(α) ∈ S for every Q ∈ R[X].

Suppose this is not the case. Let Q be a polynomial of smallest degree such that Q(α) /∈ S. Clearly
degQ > n as S is defined to be the image under evaluation at α of polynomials of degree ≤ n. Say
Q(X) = qmX

m + · · · + q1X + q0 has degree m > n and write R(X) = Q(X) − qmXm with degree
degR < degQ. Then

Q(α) = qmα
m +R(α)

By choice of Q and the fact that degR < degQ we know R(α) ∈ S. Since Q(α) /∈ S and S is closed
under addition we deduce that amα

m /∈ S. But

qmα
m = qmα

m−n−1αn+1 = −qm(bnα
m−1 + bn−1α

m−2 + · · ·+ b0α
m−n−1)

and the RHS is a polynomial in α of degree m−1 < degQ and so lies in S. This is a contradiction.
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