Math 30820 Honors Algebra 4 Homework 2

Andrei Jorza

Due Wednesday, 2/1/2017

Do 6 of the following questions. Some questions may be obligatory. Artin a.b.c means chapter a, section b, exercise c. You may use any problem to solve any other problem.

1. (You have to do this problem) Suppose R is a commutative ring with unit and M is an R-module. Define the annihilator of M in R as $\operatorname{Ann}_{R}(M)=\{r \in R \mid r m=0, \forall m \in M\}$.
(a) Show that $\operatorname{Ann}_{R}(M)$ is an ideal of R.
(b) Show that if $I \subset \operatorname{Ann}_{R}(M)$ is an ideal of R then M is naturally an R / I-module.
(c) What is $\operatorname{Ann}_{R}(R / I)$?

Proof. (a): If $x, y \in \operatorname{Ann}_{R}(M)$ and $r \in R$ then $x m=y m=0$ for all $m \in M$ so $(x+r y) m=x m+r y m=$ 0 and so $x+r y \in \operatorname{Ann}_{R}(M)$. We deduce that $\operatorname{Ann}_{R}(M)$ is an ideal.
(b): If $I \subset \operatorname{Ann}_{R}(M)$ and $r+I \in R / I$ and $m \in M$ define $(r+I) m=r m \in M$. If $r^{\prime}+I=r+I$ then $r^{\prime}-r \in I \subset \operatorname{Ann}_{R}(M)$ and so $r^{\prime} m-r m=\left(r^{\prime}-r\right) m=0$ which means that this scalar operation is well-defined. It's easy to check that it is an actual scalar multiplication on M and so M is an R / I-module.
(c): We're asking for what $x \in R$ is it the case that $x y=0$ for all $y \in R / I$. In particular we'd need $x=0$ and so $x \in I$. If $x \in I$ then $x y \in I$ and so $x y=0$ in R / I. Thus $\operatorname{Ann}_{R}(R / I)=I$.
2. Show that the integral domain $R=\mathbb{C}\left[X^{2}, X^{3}\right]$ is not integrally closed, i.e., that there exists an element $\alpha \in \operatorname{Frac} R$ such that $\alpha \notin R$ and α is integral over R.

Proof. Note that $X=X^{3} / X^{2} \in \operatorname{Frac} R$ and is a root of the polynomial $P(Y)=Y^{2}-X^{2} \in R[Y]$ so X is integral. To show that $X \notin R$ suppose that $X=P\left(X^{2}, X^{3}\right)$ for some polynomial in two variables with complex coefficients. Taking derivatives we get $1=2 X P\left(X^{2}, X^{3}\right)+3 X^{2} P\left(X^{2}, X^{3}\right)$ and the RHS vanishes at 0 .
3. Let F be a field and $A \in M_{n \times n}(F)$ be a matrix. Recall that in class we defined the following $F[X]$ module M_{A} : as an abelian group $M_{A}=F^{n}$ and scalar multiplication is given by $P(X) \cdot v:=P(A) v$ where $P(A) \in M_{n \times n}(F)$ and F^{n} is interpreted as $M_{n \times 1}(F)$. Suppose $S \in \operatorname{GL}(n, F)$. Show that $M_{A} \cong M_{S A S^{-1}}$ as $F[X]$-modules.

Proof. Consider the map $\phi: M_{A} \rightarrow M_{S A S^{-1}}$ given by $\phi(v)=S v$. We need to check that it is an isomorphism of $F[X]$-modules. First, since S is invertible it is an isomorphism of F-vector spaces so ϕ is bijective and is additive. We only need to check that ϕ is a homomorphism of $F[X]$-vector spaces and since we already know additivity we only need that $P(X) \cdot M_{S A S^{-1}} \phi(v)=\phi\left(P(X) \cdot M_{A} v\right)$ for all $P \in F[X]$ and $v \in M_{A}$.

$$
P(X) \cdot M_{S A S^{-1}} \phi(v)=P\left(S A S^{-1}\right) S v=S P(A) S^{-1} S v=S P(A) v=\phi(P(A) v)=\phi\left(P(X) \cdot M_{A} v\right)
$$

where I used the fact that $P\left(S A S^{-1}\right)=S P(A) S^{-1}$ from last semester.
4. Artin 14.1.4 on page 437.

Proof. (a): Pick $m \in M$ nonzero. Then $R m \subset M$ is a nonzero submodule on M and by simplicity $M=R m$. Therefore $R \rightarrow M$ given by $f(x)=x m$ is surjective and so $M \cong R / \operatorname{ker} f$ by the first isomorphism theorem. Since $I=\operatorname{ker} f \subset R$ is a submodule it is an ideal and it remains to show that I is a maximal ideal. If it is not maximal it follows that R / I is not a field so there exists $0 \neq r \in R / I$ which is not invertible. But then the principal ideal (r) of R / I is a submodule of R / I and simplicity of R / I implies that either $(r)=0$ (assumed to not be true) or $(r)=R / I$ which would imply r is invertible in R / I.
(b): From class ker ϕ is a submodule of S, which is simple. Either ker $\phi=0$ in which case ϕ is injective or $\operatorname{ker} \phi=0$ in which case $\varphi=0$. Now $\operatorname{Im} \phi$ is a submodule of the simple module S^{\prime}. Either $\operatorname{Im} p h i=0$ in which case $\phi=0$ or $\operatorname{Im} \phi=S^{\prime}$ in which case ϕ is surjective. Therefore either $\phi=0$ or ϕ is an isomorphism.
5. Artin 14.2 .3 (a) and from (b) the "only if" part on page 437.

Proof. (a): If $\phi: \mathbb{Z}^{n} \rightarrow \mathbb{Z}^{m}$ is given by the matrix A then the matrix $A \in M_{m, n}(\mathbb{Z}) \subset M_{m, n}(\mathbb{R})$ also yields a linear map $\phi_{\mathbb{R}}: \mathbb{Q}^{n} \rightarrow \mathbb{Q}^{m}$. If ϕ is not injective neither is $\phi_{\mathbb{Q}}$ because if $\phi_{\mathbb{Q}}(v)=0$ for a nonzero $v \in \mathbb{Q}^{n}$ then we can clear denominators in v to get a nonzero integral $N v$ with $\phi(N v)=0$. If $\operatorname{det} A \neq 0$ then $\phi_{\mathbb{R}}$ is injective and therefore so is ϕ.
(b): If ϕ has matrix A and p is any prime let $\phi_{p}: \mathbb{F}_{p}^{n} \rightarrow \mathbb{F}_{p}^{m}$ be the linear map obtained from the $\operatorname{matrix} \bar{A}=A \bmod p \in M_{m, n}\left(\mathbb{F}_{p}\right)$. If ϕ is surjective then so is ϕ_{p} because if $\bar{v} \in \mathbb{F}_{p}^{m}$ and $v \in \mathbb{Z}^{m}$ is any vector with $v \bmod p=\bar{v}$ then $\phi(u)=v$ for some $u \in \mathbb{Z}^{n}$ and immediately $\phi_{p}(u \bmod p)=\bar{v}$. Now if the $m \times m$ minors of A were not coprime we could choose a prime divisor p of all these determinants. But then the matrix \bar{A} would have rank $<m$ which would contradict the fact that ϕ_{p} is surjective as $\operatorname{dim}_{\mathbb{F}_{p}} \operatorname{Im} \phi_{p}=\operatorname{rank} \bar{A}$ from linear algebra over fields.
6. Artin 14.2 .4 on page 437.

Proof. (a): If $I=(a)$ is principal then I has a basis and so I is free. If I is not principal but free it has a basis with at least two vectors and let $a, b \in I$ be two such basis vectors of I. But then $a b+b(-a)=0$ so a and b are dependent over R contradicting the fact they form a basis.
(b): $R / 0=R$ is free and $R / R=0$ is free. Suppose R / I is free for $I \neq 0, R$. Pick $u \in R / I$ any basis vector. But then $x u=0$ whenever $x \in I$ so u has a linear dependence.
7. Artin 14.7 .9 on page 439 .

Proof. If M is a $\mathbb{Z}[i]$-module define the abelian group $V=M$ and $\phi: V \rightarrow V$ as $\phi(v)=i v \in V$. Then ϕ is an R-module homomorphism and so it is a homomorphism of abelian groups. Moreover, $\phi \circ \phi(v)=i^{2} v=-v$ and so $\phi \circ \phi=-\mathrm{id}_{V}$.
Reciprocally, suppose V and ϕ are given as in the problem. Define $M=V$ as an abelian group and define scalar multiplication by R as

$$
(a+b i) v=a v+b \phi(v)
$$

This is well-defined and visibly satisfies $r(v+w)=r v+r w$ as ϕ is a linear map. Moreover, $(r s) v=$ $r(s(v))$ by computations as
$(a+b i)((c+d i) v)=(a+b i)(c v+d \phi(v))=a(c v+d \phi(v))+b \phi(c v+d \phi(v))=(a c-b d) v+(a d+b c) \phi(v)=((a+b i)(c+d i)) v$
as $\phi \circ \phi=-\mathrm{id}_{V}$.
8. Artin 14.8 .2 on page 440. (Here the "corresponding linear operator" refers to multiplication by t.)

Proof. Let $1, t-\alpha,(t-\alpha)^{2}, \ldots,(t-\alpha)^{n-1}$ be a basis of $\mathbb{C}[t] /(t-\alpha)^{n}$ over \mathbb{C}. Multiplication by t in this basis satisfies

$$
t(t-\alpha)^{i}=(t-\alpha)^{i+1}+\alpha(t-\alpha)^{i}
$$

and so the matrix of multiplication by t is a full Jordan block with α on the diagonal.

