Math 30820 Honors Algebra 4 Homework 2

Andrei Jorza

Due Wednesday, 2/1/2017

Do 6 of the following questions. Some questions may be obligatory. Artin a.b.c means chapter a, section b, exercise c. You may use any problem to solve any other problem.

- 1. (You have to do this problem) Suppose R is a commutative ring with unit and M is an R-module. Define the annihilator of M in R as $Ann_R(M) = \{r \in R \mid rm = 0, \forall m \in M\}$.
 - (a) Show that $\operatorname{Ann}_R(M)$ is an ideal of R.
 - (b) Show that if $I \subset \operatorname{Ann}_R(M)$ is an ideal of R then M is naturally an R/I-module.
 - (c) What is $\operatorname{Ann}_R(R/I)$?

Proof. (a): If $x, y \in \operatorname{Ann}_R(M)$ and $r \in R$ then xm = ym = 0 for all $m \in M$ so (x+ry)m = xm+rym = 0 and so $x + ry \in \operatorname{Ann}_R(M)$. We deduce that $\operatorname{Ann}_R(M)$ is an ideal.

(b): If $I \subset \operatorname{Ann}_R(M)$ and $r + I \in R/I$ and $m \in M$ define $(r + I)m = rm \in M$. If r' + I = r + I then $r' - r \in I \subset \operatorname{Ann}_R(M)$ and so r'm - rm = (r' - r)m = 0 which means that this scalar operation is well-defined. It's easy to check that it is an actual scalar multiplication on M and so M is an R/I-module.

(c): We're asking for what $x \in R$ is it the case that xy = 0 for all $y \in R/I$. In particular we'd need x = 0 and so $x \in I$. If $x \in I$ then $xy \in I$ and so xy = 0 in R/I. Thus $\operatorname{Ann}_R(R/I) = I$.

2. Show that the integral domain $R = \mathbb{C}[X^2, X^3]$ is not *integrally closed*, i.e., that there exists an element $\alpha \in \operatorname{Frac} R$ such that $\alpha \notin R$ and α is integral over R.

Proof. Note that $X = X^3/X^2 \in \text{Frac } R$ and is a root of the polynomial $P(Y) = Y^2 - X^2 \in R[Y]$ so X is integral. To show that $X \notin R$ suppose that $X = P(X^2, X^3)$ for some polynomial in two variables with complex coefficients. Taking derivatives we get $1 = 2XP(X^2, X^3) + 3X^2P(X^2, X^3)$ and the RHS vanishes at 0.

3. Let F be a field and $A \in M_{n \times n}(F)$ be a matrix. Recall that in class we defined the following F[X]module M_A : as an abelian group $M_A = F^n$ and scalar multiplication is given by $P(X) \cdot v := P(A)v$ where $P(A) \in M_{n \times n}(F)$ and F^n is interpreted as $M_{n \times 1}(F)$. Suppose $S \in GL(n, F)$. Show that $M_A \cong M_{SAS^{-1}}$ as F[X]-modules.

Proof. Consider the map $\phi: M_A \to M_{SAS^{-1}}$ given by $\phi(v) = Sv$. We need to check that it is an isomorphism of F[X]-modules. First, since S is invertible it is an isomorphism of F-vector spaces so ϕ is bijective and is additive. We only need to check that ϕ is a homomorphism of F[X]-vector spaces and since we already know additivity we only need that $P(X) \cdot_{M_{SAS^{-1}}} \phi(v) = \phi(P(X) \cdot_{M_A} v)$ for all $P \in F[X]$ and $v \in M_A$.

$$P(X) \cdot_{M_{SAS^{-1}}} \phi(v) = P(SAS^{-1})Sv = SP(A)S^{-1}Sv = SP(A)v = \phi(P(A)v) = \phi(P(X) \cdot_{M_A} v)$$

where I used the fact that $P(SAS^{-1}) = SP(A)S^{-1}$ from last semester.

4. Artin 14.1.4 on page 437.

Proof. (a): Pick $m \in M$ nonzero. Then $Rm \subset M$ is a nonzero submodule on M and by simplicity M = Rm. Therefore $R \to M$ given by f(x) = xm is surjective and so $M \cong R/\ker f$ by the first isomorphism theorem. Since $I = \ker f \subset R$ is a submodule it is an ideal and it remains to show that I is a maximal ideal. If it is not maximal it follows that R/I is not a field so there exists $0 \neq r \in R/I$ which is not invertible. But then the principal ideal (r) of R/I is a submodule of R/I and simplicity of R/I implies that either (r) = 0 (assumed to not be true) or (r) = R/I which would imply r is invertible in R/I.

(b): From class ker ϕ is a submodule of S, which is simple. Either ker $\phi = 0$ in which case ϕ is injective or ker $\phi = 0$ in which case $\varphi = 0$. Now Im ϕ is a submodule of the simple module S'. Either Im phi = 0 in which case $\phi = 0$ or Im $\phi = S'$ in which case ϕ is surjective. Therefore either $\phi = 0$ or ϕ is an isomorphism.

5. Artin 14.2.3 (a) and from (b) the "only if" part on page 437.

Proof. (a): If $\phi : \mathbb{Z}^n \to \mathbb{Z}^m$ is given by the matrix A then the matrix $A \in M_{m,n}(\mathbb{Z}) \subset M_{m,n}(\mathbb{R})$ also yields a linear map $\phi_{\mathbb{R}} : \mathbb{Q}^n \to \mathbb{Q}^m$. If ϕ is not injective neither is $\phi_{\mathbb{Q}}$ because if $\phi_{\mathbb{Q}}(v) = 0$ for a nonzero $v \in \mathbb{Q}^n$ then we can clear denominators in v to get a nonzero integral Nv with $\phi(Nv) = 0$. If det $A \neq 0$ then $\phi_{\mathbb{R}}$ is injective and therefore so is ϕ .

(b): If ϕ has matrix A and p is any prime let $\phi_p : \mathbb{F}_p^n \to \mathbb{F}_p^m$ be the linear map obtained from the matrix $\overline{A} = A \mod p \in M_{m,n}(\mathbb{F}_p)$. If ϕ is surjective then so is ϕ_p because if $\overline{v} \in \mathbb{F}_p^m$ and $v \in \mathbb{Z}^m$ is any vector with $v \mod p = \overline{v}$ then $\phi(u) = v$ for some $u \in \mathbb{Z}^n$ and immediately $\phi_p(u \mod p) = \overline{v}$. Now if the $m \times m$ minors of A were not coprime we could choose a prime divisor p of all these determinants. But then the matrix \overline{A} would have rank < m which would contradict the fact that ϕ_p is surjective as $\dim_{\mathbb{F}_n} \operatorname{Im} \phi_p = \operatorname{rank} \overline{A}$ from linear algebra over fields.

6. Artin 14.2.4 on page 437.

Proof. (a): If I = (a) is principal then I has a basis and so I is free. If I is not principal but free it has a basis with at least two vectors and let $a, b \in I$ be two such basis vectors of I. But then ab+b(-a) = 0 so a and b are dependent over R contradicting the fact they form a basis.

(b): R/0 = R is free and R/R = 0 is free. Suppose R/I is free for $I \neq 0, R$. Pick $u \in R/I$ any basis vector. But then xu = 0 whenever $x \in I$ so u has a linear dependence.

7. Artin 14.7.9 on page 439.

Proof. If M is a $\mathbb{Z}[i]$ -module define the abelian group V = M and $\phi : V \to V$ as $\phi(v) = iv \in V$. Then ϕ is an R-module homomorphism and so it is a homomorphism of abelian groups. Moreover, $\phi \circ \phi(v) = i^2 v = -v$ and so $\phi \circ \phi = -id_V$.

Reciprocally, suppose V and ϕ are given as in the problem. Define M = V as an abelian group and define scalar multiplication by R as

$$(a+bi)v = av + b\phi(v)$$

This is well-defined and visibly satisfies r(v + w) = rv + rw as ϕ is a linear map. Moreover, (rs)v = r(s(v)) by computations as

$$(a+bi)((c+di)v) = (a+bi)(cv+d\phi(v)) = a(cv+d\phi(v)) + b\phi(cv+d\phi(v)) = (ac-bd)v + (ad+bc)\phi(v) = ((a+bi)(c+di))v$$

as $\phi \circ \phi = -\operatorname{id}_V$.

8. Artin 14.8.2 on page 440. (Here the "corresponding linear operator" refers to multiplication by t.)

Proof. Let $1, t - \alpha, (t - \alpha)^2, \dots, (t - \alpha)^{n-1}$ be a basis of $\mathbb{C}[t]/(t - \alpha)^n$ over \mathbb{C} . Multiplication by t in this basis satisfies

$$t(t-\alpha)^{i} = (t-\alpha)^{i+1} + \alpha(t-\alpha)^{i}$$

and so the matrix of multiplication by t is a full Jordan block with α on the diagonal.