
Math 30820 Honors Algebra 4

Homework 2

Andrei Jorza

Due Wednesday, 2/1/2017

Do 6 of the following questions. Some questions may be obligatory. Artin a.b.c means
chapter a, section b, exercise c. You may use any problem to solve any other problem.

1. (You have to do this problem) Suppose R is a commutative ring with unit and M is an R-module.
Define the annihilator of M in R as AnnR(M) = {r ∈ R | rm = 0,∀m ∈M}.

(a) Show that AnnR(M) is an ideal of R.

(b) Show that if I ⊂ AnnR(M) is an ideal of R then M is naturally an R/I-module.

(c) What is AnnR(R/I)?

Proof. (a): If x, y ∈ AnnR(M) and r ∈ R then xm = ym = 0 for all m ∈M so (x+ry)m = xm+rym =
0 and so x+ ry ∈ AnnR(M). We deduce that AnnR(M) is an ideal.

(b): If I ⊂ AnnR(M) and r + I ∈ R/I and m ∈ M define (r + I)m = rm ∈ M . If r′ + I = r + I
then r′ − r ∈ I ⊂ AnnR(M) and so r′m− rm = (r′ − r)m = 0 which means that this scalar operation
is well-defined. It’s easy to check that it is an actual scalar multiplication on M and so M is an
R/I-module.

(c): We’re asking for what x ∈ R is it the case that xy = 0 for all y ∈ R/I. In particular we’d need
x = 0 and so x ∈ I. If x ∈ I then xy ∈ I and so xy = 0 in R/I. Thus AnnR(R/I) = I.

2. Show that the integral domain R = C[X2, X3] is not integrally closed, i.e., that there exists an element
α ∈ FracR such that α /∈ R and α is integral over R.

Proof. Note that X = X3/X2 ∈ FracR and is a root of the polynomial P (Y ) = Y 2−X2 ∈ R[Y ] so X
is integral. To show that X /∈ R suppose that X = P (X2, X3) for some polynomial in two variables
with complex coefficients. Taking derivatives we get 1 = 2XP (X2, X3) + 3X2P (X2, X3) and the RHS
vanishes at 0.

3. Let F be a field and A ∈ Mn×n(F ) be a matrix. Recall that in class we defined the following F [X]-
module MA: as an abelian group MA = Fn and scalar multiplication is given by P (X) · v := P (A)v
where P (A) ∈ Mn×n(F ) and Fn is interpreted as Mn×1(F ). Suppose S ∈ GL(n, F ). Show that
MA
∼= MSAS−1 as F [X]-modules.

Proof. Consider the map φ : MA → MSAS−1 given by φ(v) = Sv. We need to check that it is an
isomorphism of F [X]-modules. First, since S is invertible it is an isomorphism of F -vector spaces so
φ is bijective and is additive. We only need to check that φ is a homomorphism of F [X]-vector spaces
and since we already know additivity we only need that P (X) ·MSAS−1 φ(v) = φ(P (X) ·MA

v) for all
P ∈ F [X] and v ∈MA.

P (X) ·MSAS−1 φ(v) = P (SAS−1)Sv = SP (A)S−1Sv = SP (A)v = φ(P (A)v) = φ(P (X) ·MA
v)

where I used the fact that P (SAS−1) = SP (A)S−1 from last semester.
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4. Artin 14.1.4 on page 437.

Proof. (a): Pick m ∈ M nonzero. Then Rm ⊂ M is a nonzero submodule on M and by simplicity
M = Rm. Therefore R → M given by f(x) = xm is surjective and so M ∼= R/ ker f by the first
isomorphism theorem. Since I = ker f ⊂ R is a submodule it is an ideal and it remains to show that
I is a maximal ideal. If it is not maximal it follows that R/I is not a field so there exists 0 6= r ∈ R/I
which is not invertible. But then the principal ideal (r) of R/I is a submodule of R/I and simplicity
of R/I implies that either (r) = 0 (assumed to not be true) or (r) = R/I which would imply r is
invertible in R/I.

(b): From class kerφ is a submodule of S, which is simple. Either kerφ = 0 in which case φ is injective
or kerφ = 0 in which case ϕ = 0. Now Imφ is a submodule of the simple module S′. Either Im phi = 0
in which case φ = 0 or Imφ = S′ in which case φ is surjective. Therefore either φ = 0 or φ is an
isomorphism.

5. Artin 14.2.3 (a) and from (b) the “only if” part on page 437.

Proof. (a): If φ : Zn → Zm is given by the matrix A then the matrix A ∈ Mm,n(Z) ⊂ Mm,n(R) also
yields a linear map φR : Qn → Qm. If φ is not injective neither is φQ because if φQ(v) = 0 for a nonzero
v ∈ Qn then we can clear denominators in v to get a nonzero integral Nv with φ(Nv) = 0. If detA 6= 0
then φR is injective and therefore so is φ.

(b): If φ has matrix A and p is any prime let φp : Fn
p → Fm

p be the linear map obtained from the

matrix A = A mod p ∈Mm,n(Fp). If φ is surjective then so is φp because if v ∈ Fm
p and v ∈ Zm is any

vector with v mod p = v then φ(u) = v for some u ∈ Zn and immediately φp(u mod p) = v. Now if
the m×m minors of A were not coprime we could choose a prime divisor p of all these determinants.
But then the matrix A would have rank < m which would contradict the fact that φp is surjective as
dimFp

Imφp = rankA from linear algebra over fields.

6. Artin 14.2.4 on page 437.

Proof. (a): If I = (a) is principal then I has a basis and so I is free. If I is not principal but free it has
a basis with at least two vectors and let a, b ∈ I be two such basis vectors of I. But then ab+b(−a) = 0
so a and b are dependent over R contradicting the fact they form a basis.

(b): R/0 = R is free and R/R = 0 is free. Suppose R/I is free for I 6= 0, R. Pick u ∈ R/I any basis
vector. But then xu = 0 whenever x ∈ I so u has a linear dependence.

7. Artin 14.7.9 on page 439.

Proof. If M is a Z[i]-module define the abelian group V = M and φ : V → V as φ(v) = iv ∈ V .
Then φ is an R-module homomorphism and so it is a homomorphism of abelian groups. Moreover,
φ ◦ φ(v) = i2v = −v and so φ ◦ φ = − idV .

Reciprocally, suppose V and φ are given as in the problem. Define M = V as an abelian group and
define scalar multiplication by R as

(a+ bi)v = av + bφ(v)

This is well-defined and visibly satisfies r(v + w) = rv + rw as φ is a linear map. Moreover, (rs)v =
r(s(v)) by computations as

(a+bi)((c+di)v) = (a+bi)(cv+dφ(v)) = a(cv+dφ(v))+bφ(cv+dφ(v)) = (ac−bd)v+(ad+bc)φ(v) = ((a+bi)(c+di))v

as φ ◦ φ = − idV .
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8. Artin 14.8.2 on page 440. (Here the “corresponding linear operator” refers to multiplication by t.)

Proof. Let 1, t − α, (t − α)2, . . . , (t − α)n−1 be a basis of C[t]/(t − α)n over C. Multiplication by t in
this basis satisfies

t(t− α)i = (t− α)i+1 + α(t− α)i

and so the matrix of multiplication by t is a full Jordan block with α on the diagonal.
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