Math 30820 Honors Algebra 4 Homework 3

Andrei Jorza

Due Wednesday, 2/8/2017

Do 6 of the following questions.

Throughout this problem set R is an integral domain, unless otherwise specified.

1. Let R be a ring, I an ideal of R and M an R-module.
(a) Show that $I M=\left\{\sum_{\left.\text {finite } a_{i} m_{i} \mid a_{i} \in I, m_{i} \in M\right\}}\right.$ is an R-submodule of M.
(b) Show that $M / I M$ is an R / I-module.
2. Consider \mathbb{C} as a $\mathbb{Z}[i]$-module under usual multiplication of complex numbers. Determine the torsion submodule of the $\mathbb{Z}[i]$-module $\mathbb{C} / \mathbb{Z}[i]$.
3. Consider the ring $A=\mathbb{F}_{2}[X] /\left(X^{2}-X\right)$ with 4 elements. Show that torsion elements of the free A module A do not form a submodule. (Note that A is not a domain so this does not contradict the statement from class.)
4. Let M be a finitely generated R-module and $\left\{m_{1}, \ldots, m_{n}\right\}$ a linearly independent subset of M.
(a) Show that $N=\left\langle m_{1}, \ldots, m_{n}\right\rangle$ is free $\cong R^{n}$.
(b) If $\left\{m_{1}, \ldots, m_{n}\right\}$ is a maximal linearly independent subset show that M / N is torsion, i.e., every element of M / N is annihilated by a nonzero element of R.
5. Let M be an R-module and $\operatorname{Tor}(M)$ its torsion submodule. Show that $M / \operatorname{Tor}(M)$ is torsion-free, i.e., $\operatorname{Tor}(M / \operatorname{Tor}(M))=0$.
6. Consider the R-module $M=R^{n} \oplus N$ where N is a torsion module, i.e., $N=\operatorname{Tor}(N)$. Let e_{1}, \ldots, e_{n} be the standard basis of R^{n} and $t_{1}, \ldots, t_{n} \in N$ arbitrary elements. Show that $v_{1}=e_{1}+t_{1}, \ldots, v_{n}=e_{n}+t_{n}$ are linearly independent and the map $f: M \rightarrow M$ defined as the identity on N and sending $e_{i} \mapsto v_{i}$ is an isomorphism. (The point of this exercise is that while $N=\operatorname{Tor}(M)$ is well-defined solely in terms of M, the free part R^{n} is not as every basis can be changed by torsion elements to get another basis.)
7. Let $f: M \rightarrow N$ be a homomorphism of R-modules. If $\operatorname{Im} f$ and ker f are finitely generated, show that M is finitely generated.
8. Let $\phi: R \rightarrow S$ be a ring homomorphism and M an S-module. For $r \in R$ and $m \in M$ define $r \cdot m:=\phi(r) m$, the later being scalar multiplication in M by $\phi(r) \in S$.
(a) Show that this operation yields an R-module structure on the abelian group M. Call $\phi^{*} M$ this R-module.
(b) If $f: M \rightarrow N$ is a homomorphism of S-modules define $\phi^{*} f: \phi^{*} M \rightarrow \phi^{*} N$ by $\phi^{*} f(m)=f(m)$. Show that $\phi^{*} f \in \operatorname{Hom}_{R}\left(\phi^{*} M, \phi^{*} N\right)$.
9. (An extra problem whose solution I won't write up) Let $X^{2}-a X+b \in \mathbb{R}[X]$ have complex roots $u \pm v i$ with $v \neq 0$. Find a basis of the \mathbb{R}-vector space $\mathbb{R}[X] /\left(\left(X^{2}-a X+b\right)^{n}\right)$ with respect to which the linear map "multiplication by X " has matrix

$$
\left(\begin{array}{cccc}
C & I_{2} & & \\
& C & I_{2} & \\
& & \ddots & I_{2} \\
& & & C
\end{array}\right)
$$

where $C=\left(\begin{array}{cc}u & v \\ -v & u\end{array}\right)$. This procedure yields the Jordan canonical form for real matrices.

