Math 30820 Honors Algebra 4 Homework 3

Andrei Jorza

Due Wednesday, 2/8/2017

Do 6 of the following questions.

Throughout this problem set R is an **integral domain**, unless otherwise specified.

- 1. Let R be a ring, I an ideal of R and M an R-module.
 - (a) Show that $IM = \{ \sum_{\text{finite} a_i m_i | a_i \in I, m_i \in M \}} \text{ is an } R\text{-submodule of } M.$
 - (b) Show that M/IM is an R/I-module.
- 2. Consider \mathbb{C} as a $\mathbb{Z}[i]$ -module under usual multiplication of complex numbers. Determine the torsion submodule of the $\mathbb{Z}[i]$ -module $\mathbb{C}/\mathbb{Z}[i]$.
- 3. Consider the ring $A = \mathbb{F}_2[X]/(X^2 X)$ with 4 elements. Show that torsion elements of the free A-module A do not form a submodule. (Note that A is not a domain so this does not contradict the statement from class.)
- 4. Let M be a finitely generated R-module and $\{m_1, \ldots, m_n\}$ a linearly independent subset of M.
 - (a) Show that $N = \langle m_1, \dots, m_n \rangle$ is free $\cong \mathbb{R}^n$.
 - (b) If $\{m_1, \ldots, m_n\}$ is a maximal linearly independent subset show that M/N is torsion, i.e., every element of M/N is annihilated by a nonzero element of R.
- 5. Let M be an R-module and Tor(M) its torsion submodule. Show that M/Tor(M) is torsion-free, i.e., Tor(M/Tor(M)) = 0.
- 6. Consider the R-module $M = R^n \oplus N$ where N is a torsion module, i.e., N = Tor(N). Let e_1, \ldots, e_n be the standard basis of R^n and $t_1, \ldots, t_n \in N$ arbitrary elements. Show that $v_1 = e_1 + t_1, \ldots, v_n = e_n + t_n$ are linearly independent and the map $f: M \to M$ defined as the identity on N and sending $e_i \mapsto v_i$ is an isomorphism. (The point of this exercise is that while N = Tor(M) is well-defined solely in terms of M, the free part R^n is not as every basis can be changed by torsion elements to get another basis.)
- 7. Let $f: M \to N$ be a homomorphism of R-modules. If Im f and ker f are finitely generated, show that M is finitely generated.
- 8. Let $\phi: R \to S$ be a ring homomorphism and M an S-module. For $r \in R$ and $m \in M$ define $r \cdot m := \phi(r)m$, the later being scalar multiplication in M by $\phi(r) \in S$.
 - (a) Show that this operation yields an R-module structure on the abelian group M. Call ϕ^*M this R-module.
 - (b) If $f: M \to N$ is a homomorphism of S-modules define $\phi^* f: \phi^* M \to \phi^* N$ by $\phi^* f(m) = f(m)$. Show that $\phi^* f \in \operatorname{Hom}_R(\phi^* M, \phi^* N)$.

9. (An extra problem whose solution I won't write up) Let $X^2 - aX + b \in \mathbb{R}[X]$ have complex roots $u \pm vi$ with $v \neq 0$. Find a basis of the \mathbb{R} -vector space $\mathbb{R}[X]/((X^2 - aX + b)^n)$ with respect to which the linear map "multiplication by X" has matrix

$$\begin{pmatrix} C & I_2 & & \\ & C & I_2 & \\ & & \ddots & I_2 \\ & & & C \end{pmatrix}$$

where $C = \begin{pmatrix} u & v \\ -v & u \end{pmatrix}$. This procedure yields the Jordan canonical form for real matrices.