Math 30820 Honors Algebra 4 Homework 3

Andrei Jorza

Due Wednesday, 2/8/2017

Do 6 of the following questions.

Throughout this problem set R is an integral domain, unless otherwise specified.

1. Let R be a ring, I an ideal of R and M an R-module.
(a) Show that $I M=\left\{\sum_{\left.\text {finite } a_{i} m_{i} \mid a_{i} \in I, m_{i} \in M\right\}}\right.$ is an R-submodule of M.
(b) Show that $M / I M$ is an R / I-module.

Proof. (a): $I M$ is clearly closed under addition. If $r \in I$ and $\sum a_{i} m_{i} \in I M$ then $r \sum a_{i} m_{i} \in I M$ as $r a_{i} \in I$ because I is an ideal. Therefore $I M$ is a submodule of M.
(b): If $r+I \in R / I$ and $m+I M \in M / I M$ we define scalar multiplication by $(r+I)(m+I M)=r m+I M$. We only need to check that this is well defined. I.e., we need to check that if $r^{\prime}+I=r+I$ and $m^{\prime}+I M=m+I M$ then $r m+I M=r^{\prime} m^{\prime}+I M$. But then $r^{\prime}=r+a$ for $a \in I$ and $m^{\prime}=m+b n$ with $b \in I$ and $n \in M$. Therefore

$$
r^{\prime} m^{\prime}=(r+a)(m+b n)=r m+a m^{\prime}+b r n
$$

and so $r^{\prime} m^{\prime}-r m \in I M$ as desired.
2. Consider \mathbb{C} as a $\mathbb{Z}[i]$-module under usual multiplication of complex numbers. Determine the torsion submodule of the $\mathbb{Z}[i]$-module $\mathbb{C} / \mathbb{Z}[i]$.

Proof. $\operatorname{Tor}(\mathbb{C} / \mathbb{Z}[i])=\{z \in \mathbb{C} \mid(m+n i) z \in \mathbb{Z}[i]$ for some $m+n i \in \mathbb{Z}[i]\}$. Therefore the torsion module consists of $\operatorname{Frac}(\mathbb{Z}[i]) / \mathbb{Z}[i]=\mathbb{Q}[i] / \mathbb{Z}[i]$.
3. Consider the ring $A=\mathbb{F}_{2}[X] /\left(X^{2}-X\right)$ with 4 elements. Show that torsion elements of the free A module A do not form a submodule. (Note that A is not a domain so this does not contradict the statement from class.)

Proof. Write $R=\{0,1, X, X-1\}$. Clearly $X(X-1)=0$ but $X, X-1 \neq 0$ so $X, X-1 \in \operatorname{Tor}(A)$. However, their difference is $1 \notin \operatorname{Tor}(A)$. Therefore $\operatorname{Tor}(A)$ is not closed under addition.
4. Let M be a finitely generated R-module and $\left\{m_{1}, \ldots, m_{n}\right\}$ a linearly independent subset of M.
(a) Show that $N=\left\langle m_{1}, \ldots, m_{n}\right\rangle$ is free $\cong R^{n}$.
(b) If $\left\{m_{1}, \ldots, m_{n}\right\}$ is a maximal linearly independent subset show that M / N is torsion, i.e., every element of M / N is annihilated by a nonzero element of R.

Proof. (a): From class the map $R^{n} \rightarrow M$ given by $\phi\left(\left(x_{i}\right)\right)=\sum x_{i} m_{i}$ is an R-module homomorphism with image N. As the m_{i} are linearly independent we deduce that $\operatorname{ker} \phi=0$ so the 1 st isomorphism theorem implies $N \cong R^{n}$.
(b): Choose any nonzero $m \in M / N$, i.e., $m \notin N$. By maximality of the linearly independent set m_{1}, \ldots, m_{n} it follows that m, m_{1}, \ldots, m_{n} are linearly dependent and so $a m+\sum a_{i} m_{i}=0$ for $a, a_{i} \in R$ not all 0 . Note that $a \neq 0$ as the m_{i} are linearly independent. But then $a m \in N$ so $a m=0$ in M / N with $a \neq 0$ so m is torsion in M / N.
5. Let M be an R-module and $\operatorname{Tor}(M)$ its torsion submodule. Show that $M / \operatorname{Tor}(M)$ is torsion-free, i.e., $\operatorname{Tor}(M / \operatorname{Tor}(M))=0$.

Proof. If $m \in \operatorname{Tor}(M / \operatorname{Tor}(M))$ then for some nonzero $a \in R$, $a m=0$ in $M / \operatorname{Tor}(M)$, i.e., $a m \in$ $\operatorname{Tor}(M)$. By definition for some nonzero $b \in R, b(a m)=0$ so $(a b) m=0$. Since $a, b \neq 0$ and R is a domain we get that $m \in \operatorname{Tor}(M)$ and so $m=0$ in $M / \operatorname{Tor}(M)$.
6. Consider the R-module $M=R^{n} \oplus N$ where N is a torsion module, i.e., $N=\operatorname{Tor}(N)$. Let e_{1}, \ldots, e_{n} be the standard basis of R^{n} and $t_{1}, \ldots, t_{n} \in N$ arbitrary elements. Show that $v_{1}=e_{1}+t_{1}, \ldots, v_{n}=e_{n}+t_{n}$ are linearly independent and the map $f: M \rightarrow M$ defined as the identity on N and sending $e_{i} \mapsto v_{i}$ is an isomorphism. (The point of this exercise is that while $N=\operatorname{Tor}(M)$ is well-defined solely in terms of M, the free part R^{n} is not as every basis can be changed by torsion elements to get another basis.)

Proof. If $\sum a_{i}\left(e_{i}+t_{i}\right)=0$ then $\sum a_{i} e_{i}=-\sum a_{i} t_{i} \in N$. By the torsion assumption on N for some nonzero $b \in R$ we have $b \sum a_{i} e_{i}=0$. By linear independence of the e_{i} we get $b a_{i}=0$ for all i. As R is a domain and $b \neq 0$ we get all $a_{i}=0$.

Consider the map $f: M=R^{n} \oplus N \rightarrow M$ given by $f\left(r_{1}, \ldots, r_{n}, v\right)=\sum r_{i} v_{i}+n$. One can write this also as $f\left(\left(r_{i}\right), n\right)=\left(\left(r_{i}\right), n+\sum r_{i} t_{i}\right)$. It is clearly an R-module homomorphism. Suppose $g: M \rightarrow M$ is the homomorphism $g\left(\left(r_{i}\right), n\right)=\left(\left(r_{i}\right), n-\sum r_{i} t_{i}\right)$. Then $f \circ g=g \circ f=\operatorname{id}_{M}$ and so f and g as isomorphisms.
7. Let $f: M \rightarrow N$ be a homomorphism of R-modules. If $\operatorname{Im} f$ and $\operatorname{ker} f$ are finitely generated, show that M is finitely generated.

Proof. Suppose ker f is generated by k_{1}, \ldots, k_{a} and $\operatorname{Im} f$ is generated by $n_{1}=f\left(m_{1}\right), \ldots, n_{b}=f\left(m_{b}\right)$. Let $m \in M$. Then $f(m) \in \operatorname{Im} f$ so for some $r_{i} \in R$ have $f(m)=\sum r_{i} n_{i}=\sum r_{i} f\left(m_{i}\right)=f\left(\sum r_{i} m_{i}\right)$.
But then $f\left(m-\sum r_{i} m_{i}\right)=0$ so $m-\sum r_{i} m_{i} \in \operatorname{ker} f$ is generated by the k_{j}. We can therefore find $s_{1}, \ldots, s_{a} \in R$ such that $m-\sum r_{i} m_{i}=\sum s_{j} k_{j}$. This implies that M is generated by the k_{j} and the m_{i}.
8. Let $\phi: R \rightarrow S$ be a ring homomorphism and M an S-module. For $r \in R$ and $m \in M$ define $r \cdot m:=\phi(r) m$, the later being scalar multiplication in M by $\phi(r) \in S$.
(a) Show that this operation yields an R-module structure on the abelian group M. Call $\phi^{*} M$ this R-module.
(b) If $f: M \rightarrow N$ is a homomorphism of S-modules define $\phi^{*} f: \phi^{*} M \rightarrow \phi^{*} N$ by $\phi^{*} f(m)=f(m)$. Show that $\phi^{*} f \in \operatorname{Hom}_{R}\left(\phi^{*} M, \phi^{*} N\right)$.

Proof. (a): We need to check that if $r, r^{\prime} \in R$ and $m, m^{\prime} \in M$ then $\left(r+r^{\prime}\right) \cdot m=r \cdot m+r^{\prime} \cdot m$ and $r \cdot\left(m+m^{\prime}\right)=r \cdot m+r \cdot m^{\prime}$. This follows from the fast that ϕ is additive. Also we need to check that $\left(r r^{\prime}\right) \cdot m=r \cdot\left(r^{\prime} \cdot m\right)$ which again is immediate as ϕ is multiplicative.
(b): The map f is already a homomorphism of abelian groups (and as abelian group M is the same as $\left.\phi^{*} M\right)$ so we only need to check R-linearity. We need to check that $\phi^{*} f(r \cdot m)=r \cdot \phi^{*} f(m)$. This is equivalent to $\phi(r) f(m)=f(\phi(r) m)$ which follows from the fact that f is S-linear.
9. (An extra problem whose solution I won't write up) Let $X^{2}-a X+b \in \mathbb{R}[X]$ have complex roots $u \pm v i$ with $v \neq 0$. Find a basis of the \mathbb{R}-vector space $\mathbb{R}[X] /\left(\left(X^{2}-a X+b\right)^{n}\right)$ with respect to which the linear map "multiplication by X " has matrix

$$
\left(\begin{array}{cccc}
C & I_{2} & & \\
& C & I_{2} & \\
& & \ddots & I_{2} \\
& & & C
\end{array}\right)
$$

where $C=\left(\begin{array}{cc}u & v \\ -v & u\end{array}\right)$. This procedure yields the Jordan canonical form for real matrices.

