
Math 30820 Honors Algebra 4

Homework 4

Andrei Jorza

Due Wednesday, 2/15/2017

Do 6 of the following questions. Some questions may be obligatory. Artin a.b.c means
chapter a, section b, exercise c. You may use any problem to solve any other problem.

Throughout this problem set R is an integral domain, unless otherwise specified.

1. (You must do this problem) Suppose R is a commutative ring such that every ideal of R is finitely
generated. Suppose M is an R-submodule of a finite rank free module Rn. Show that M is also finitely
generated. [Hint: Consider the image and kernel of M under the homomorphism Rn → Rn−1 which is
given by (x1, . . . , xn) 7→ (x1, . . . , xn−1) and then argue by induction.]

Proof. By induction on n. The base case is n = 1. Every submodule of R is an ideal and this is finitely
generated by assumption. Suppose every submodule of Rk is finitely generated for k < n. Let M ⊂ Rn

and let π be the homomorphism from the hint. Also denote by π the restriction π : M → Rn−1. From
homework 3, to show that M is finitely generated it suffices to show that kerπ and Imπ are finitely
generated. Since Imπ ⊂ Rn−1 is a submodule it is finitely generated by the inductive hypothesis.
What about kerπ? By definition it is kerπ = {m ∈M | π(m) = 0}. But M ⊂ Rn is a submodule and
if we write m = (r1, . . . , rn) ∈ Rn as an n-tuple then m ∈ kerπ if and only if r1 = . . . = rn−1 = 0 so
kerπ = {(0, . . . , 0, r) | r ∈ R} ∩M . But visibly kerπ is then a submodule of R (the last coordinate)
and by hypothesis kerπ has to be finitely generated.

2. Artin 14.7.7 on page 439.

Proof. Consider the homomorphism of free R-modules f : R2 → R2 given by left-multiplication by the

matrix A =

(
1 + i 2− i

2 5i

)
. Then V is defined as R2/ Im f = coker f . From the example done in class

it suffices to transform A into its diagonal echelon form. Here are the matrices(
1 + i 2− i

2 5i

)
7→
(

1 + i 4− 3i
2 i

)
7→
(

7 + 9i 4− 3i
0 i

)
7→
(

7 + 9i 0
0 i

)
where the transformations are c2 7→ c2 − 2ic1, c1 7→ c1 + 2ic2, r1 7→ r1 − i(4 − 3i)r2. Thus V ∼=
R2/ Im f = R⊕R/(7 + 9i)⊕ (i) ∼= Z[i]/(7 + 9i).

3. Artin 14.7.8 on page 439.

Proof. (a): Suppose Fp has the structure of a Z[i]-module. Suppose now that i · 1 = k with k ∈ Fp.
Then i · (i · 1) = i · k = k(i · 1) = k2 but this is also equal to i2 · 1 = −1 · 1 = −1. Therefore it’s
necessary that k2 = −1 in Fp. From last semester we know that such a k can exist if and only if
p ≡ 1 (mod 4) or p = 2. If p = 2 then define z · x = x for all z ∈ Z[i] and x ∈ Fp and this yields a
module structure because −1 = 1 in F2. If p ≡ 1 (mod 4) let k be such that k2 = −1 in Fp and define
(m+ ni) · x = (m+ nk)x ∈ Fp. This yields a Z[i]-module structure on Fp.
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(b): From homework 3 it’s enough to give an Fp-linear homomorphism of vector spaces on F2
p such

that ϕ ◦ ϕ = − id. Multiplication on the left by

(
1

−1

)
works.

4. Artin 14.8.6 on page 440.

Proof. Caution: while every ideal of C[ε] is principal (indeed, by the correspondence theorem ideals of
C[ε] = C[X]/(X2) are of the form I/(X2) where I is an ideal of C[X] containing (X2)), the ring C[ε]
is not a domain (ε2 = 0) so it is not a PID and the theorem from class is not applicable.

Recall from a previous homework that if f : R → S is a ring homomorphism and M is an S-module
then f∗M defined as an abelian group by f∗M = M with R-multiplication via r ·R m = f(r) ·S m is
an R-module. Consider this for the projection homomorphism π : C[X] → C[ε] = C[X]/(X2). If M
is a finitely generated C[ε]-module then π∗M is a finitely generated C[X]-module (check this, it’s not
hard, you can use the same generators). Since C[X] is a PID we have

π∗M ∼= C[X]r ⊕
⊕

C[X]/(Pi(X))

for P1 | . . . | Pn.

The identity map m 7→ m on π∗M → M is R-linear and as M is an C[ε]-module it follows that
X2 ·m = ε2 ·m = 0. But multiplication by X2 is not the 0 map on C[X] so the rank of M as a C[X]-
module is 0. Moreover, on C[X]/(Pi(X)) we need multiplication by X2 to be 0 which immediately
implies that X2 ∈ (Pi(X)). Therefore Pi(X) | X2 so each Pi is either 1, X or X2. Suppose among the
Pi, a are 1, b are X and c are X2. Then

π∗M = (C[X]/(1))a ⊕ (C[X]/(X))b ⊕ (C[X]/(X2))c = Cb ⊕ C[ε]c

and this is also M as a C[ε]-module.

5. Artin 15.2.3 on page 472.

Proof. Suppose the equation
∑
x2i = −1 had a solution in the field Q(ζ 3

√
2). Consider the unique field

isomorphism f : Q(ζ 3
√

2) ∼= Q( 3
√

2) that is the identity on Q. Then f(
∑
x2i ) =

∑
x2i = −1 would have

a solution in Q( 3
√

2) ⊂ R. But
∑
x2i = −1 has no solution in R.

6. Artin 15.3.2 on page 472.

Proof. By Eisenstein the polynomial is irreducible over Q and if α ∈ C is a root then from class
[Q(α) : Q] = 4. If the polynomial were reducible over Q( 3

√
2) then the minimal polynomial of α over

Q( 3
√

2) would have degree < 4 so [Q( 3
√

2, α) : Q( 3
√

2)] < 4. But then [Q( 3
√

2, α) : Q] < 12. However, we
know that 3 = [Q( 3

√
2) : Q] and 4 = [Q(α) : Q] divide this degree and the smallest number divisible by

3 and 4 is 12.

7. Artin 15.3.9 on page 473.

Proof. As in the previous problem, f(x) is irreducible over Q(β) if and only if [Q(α, β) : Q(β)] =
[Q(α) : Q] = deg f(x). But this is equivalent to [Q(α, β) : Q] = [Q(α) : Q][Q(β) : Q]. This condition is
symmetric with respect to α and β so it is also equivalent to g(x) being irreducible over Q(α).

8. Artin 15.4.1 on page 473.
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Proof. Note that αγ = α + α3 = 2α + 1 so we solve α = 1/(γ − 2). But α satisfies α3 = α + 1 so we
get the equation (γ− 2)−3 = (γ− 2)−1 + 1 which gives 1 = (γ− 2)2 + (γ− 2)3. We get that γ is a root
of the polynomial

f(X) = (X − 2)3 + (X − 2)2 − 1 = X3 − 5X2 + 8X − 5

We only need to check that f(X) is irreducible over Q. Otherwise f(X) would have a rational root as
f(X) would have to have a linear factor. Alternatively, [Q(γ) : Q] < 3. But since γ ∈ Q(α) we have
Q(γ) ⊂ Q(α) so [Q(γ) : Q] | [Q(α) : Q] = 3. It would have to be that [Q(γ) : Q] = so γ ∈ Q as 2 - 3.

So it’s enough to show that f(X) does not have a rational root. But f(X) is monic so its roots are
integral over Z. But from homework 2 we know that the only rationals which are integral over Q are
the integers. So it’s enough to check that f(X) has no integral roots. Either you use a computer to
check that γ = α2 + 1 is not integral (it has decimals) or you note that f(X + 1) = X3 − 2X2 +X − 1
would also have to have an integral root. But γ−1 is a root of X3f(1/X) which is monic with integral
coefficients. Therefore γ−1 is integral over Z and rational so γ−1 ∈ Z. But then γ = ±1 and you can
easily check that ±1 is not a root of f(X).
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