
Math 30820 Honors Algebra 4

Homework 5

Andrei Jorza

Due Wednesday, 2/22/2017

Do 4 of the following questions. Some questions may be obligatory. Artin a.b.c means
chapter a, section b, exercise c. You may use any problem to solve any other problem.

Throughout this problem set R is an integral domain, unless otherwise specified.

1. (You must do this problem. It’s a more streamlined version of the proof I presented in class.) Suppose
K/F is the splitting field of P (X) ∈ F [X] and Q(X) ∈ F [X] is an irreducible polynomial with roots
α, β.

(a) Show that K(α) (respectively K(β)) is the splitting field of P (X) over F (α) (respectively F (β)).

(b) Show that K(α) ∼= K(β).

(c) Deduce that K/F is a normal extension.

Proof. (a): Suppose P has roots u1, . . . , un. Then the splitting field of P over any field S that contains
F is S(u1, . . . , un). Over F this is K = F (u1, . . . , un) while over F (α) it is F (α, u1, . . . , un) = K(α).

(b): Since Q is irreducible there is an isomorphism f : F (α)→ F (β) such that f |F = idF and f(α) = β.
As P ∈ F [X] it follows that f(P (X)) = P (X). From class we know that there exists an isomorphism
φ between the splitting field K(α) of P over F (α) and the splitting field K(β) of P over F (β) such
that φ|F (α) = f .

(c): If α ∈ K then K = K(α) ∼= K(β) and so [K(β) : K] = 1 which implies K(β) = K so β ∈ K. This
implies that if Q has a root in K then all its roots are in K as desired.

2. (You must do this problem.) Let k be a field and k(x) be the field of rational functions in the variable

x. Let t =
P (x)

Q(x)
∈ k(x) with P and Q 6= 0 coprime in k[x]. Denote by k(t) the subextension of k(x)

generated by t.

(a) Show that the polynomial R(Y ) = P (Y )− tQ(Y ) ∈ k(t)[Y ] is irreducible over k(t) and R(x) = 0.
[Hint: Use Gauss’ lemma and show that R(Y ) is irreducible over k[t, Y ].]

(b) Show that the degree of R(Y ) as a polynomial in Y is the maximum of the degrees of P (x) and
Q(x) as polynomials in x.

(c) Show that [k(x) : k(t)] = max(degP (x),degQ(x)).

Proof. (a): Gauss’ lemma implies that we only need to show that R(Y ) is irreducible in k[t, Y ] = k[Y ][t].
But P (Y ) − tQ(Y ) ∈ (k[Y ])[t] ⊂ k(Y )[t] is linear in t and so is irreducible over the field k(Y ) which
immediately implies it is irreducible over the PID k[Y ]. By definition of t we have R(x) = 0.

(b): Let n = max(degP,degQ) and write P (Y ) = aY n + lower and Q(Y ) = bY n + lower where at
least one of a, b is nonzero. Then R(Y ) = (a+ bt)Y n + lower and since a+ bt 6= 0 if a, b 6= 0 it follows
that degR = n.
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(c): The minimal polynomial of x over k(t) is R(Y ) from part (a). Therefore [k(x) : k(t)] = degR(Y )
and the conclusion follows.

3. Let K/F and L/F be field extensions. Suppose you are given subextensions K/Ki/F and L/Lj/F for i
and j in partially ordered index sets I and J such that if i ≤ i′ and j ≤ j′ then Ki ⊂ Ki′ and Lj ⊂ Lj′ .
Further assume that I and J satisfy the following property: any two elements of the partially ordered
set have an upper bound in the partially ordered set. If K =

⋃
i∈I Ki and L =

⋃
j∈J Lj . Show that

KL =
⋃

(i,j)∈I×J KiLj . [Hint: Show that the RHS is the smallest field that contains K and L.]

Proof. Since KiLj ⊂ KL because Ki ⊂ K and Lj ⊂ L it suffices, as in the hint, to show that
T =

⋃
(i,j)KiLj is a field. Suppose x, y ∈ T . Then x ∈ KiLj and y ∈ Ki′Lj′ . By hypothesis we may

choose u ∈ I and v ∈ J such that u ≥ i, i′ and v 6= j, j′. The Ki,Ki′ ⊂ Ku and Lj , Lj′ ⊂ Lv and so
x, y ∈ KuLv. Since KuLv is a field it follows that x+ y, xy, x/y ∈ KuLv ⊂ T and so T is a field.

4. Show that if K/F and L/F are algebraic extensions then KL/F is also an algebraic extension. [Hint:
Use the previous problem and the result for finite extensions in class to show that if {ui} is a basis of
K/F and {vj} are a basis of L/F then {uivj} span KL/F .]

Proof. Let BK = (ui) be a basis for K/F and BL = (vj) be a basis for L/F . Let I be the set of
finite subsets of BK , partially ordered with respect to inclusion, and similarly let J be the set of finite
subsets of BL, partially ordered with respect to inclusion. Simply by taking unions of finite sets we
deduce that any two finite sets in I (or J) have an upper bound in I (J).

For S ∈ I define KS = K(u | u ∈ S) and similarly LT for T ∈ J . Since K/F is algebraic it follows that
u is algebraic over F for all u ∈ S. The result from class then shows that KS/F , being the composite
of finitely many finite extensions over F , is then finite and therefore algebraic. As S ≤ S′ implies that
S ⊂ S′ we deduce that KS ⊂ KS′ , and the analogous statement for LT . From the previous problem
KL =

⋃
KSLT . As KS/F and LT /F are finite extensions it follows that so is KSLT and so every

element of KL, being in some KSLT , will have to be algebraic over F .

5. Show that if L/F and K/F are finite extensions such that [KL : F ] = [K : F ][L : F ] then K ∩L = F .

Proof. Let K ∩ L = M . Then [KL : F ] = [KL : M ][M : F ] ≤ [K : M ][L : M ][M : F ]. But the LHS is
[K : F ][L : F ] = [K : M ][L : M ][M : F ]2. Combining we deduce that [M : F ] ≤ 1 and so M = F .

6. Artin 15.3.7 on page 473.

Proof. (a): Suppose i ∈ F = Q( 4
√
−2). Then

√
−2 = i

√
2 ∈ F and so

√
2 ∈ F . Note Q(i) and Q(

√
2)

have only Q in common (otherwise their degrees being 2 it would mean Q(i) = Q(
√

2) and the RHS
⊂ R whereas i /∈ R) and they have degree 2 the problem on the exam implies [Q(i,

√
2) : Q] = 4.

But Q( 4
√
−2) : Q] = 4 so we’d have Q( 4

√
−2) = Q(i,

√
2). Now 4

√
−2 = 1+i√

2

4
√

2 and since i,
√

2 ∈ F
it would follow that 4

√
2 ∈ F as well. But since Q( 4

√
2) has degree 4 over Q, it would follow that

Q( 4
√
−2) ⊃ Q( 4

√
2) would have to be an equality. But then F = Q( 4

√
2) ⊂ R whereas i /∈ R.

(b): Write α = 3
√

2 and ζ = ζ3. Suppose β = 3
√

5 ∈ Q(α) ⊂ K = Q(ζ, α), the latter field being the
splitting of X3 − 2 ∈ Q[X]. Consider the field isomorphism f : Q(α) → Q(ζα) being the identity on
Q and sending α 7→ ζα. This can be done as α and ζα are roots of X3 − 2. From class we can find an
isomorphism φ : K → K such that φ|Q(α) = f .

Note β ∈ K is a root of X3 − 5 and from class we know that then φ(β) is another root of X3 − 5 so
it would have to be ξβ where ξ ∈ {1, ζ, ζ2}. Writing β = a + bα + cα2 (as 1, α, α2 are a Q-basis for
Q(α)) if φ(β) = ξβ then

aξ + bαξ + cα2ξ = ξβ = φ(β) = φ(a+ bα+ cα2) = a+ bζα+ cζ2α2
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From class we know that [Q(ζ, α) : Q] = 6 so [Q(α, ζ) : Q(α)] = 2 and so again from class the Q-basis
1, α, α2 is independent over Q(ζ). But then the relation

a(1− ξ) + b(ζ − ξ)α+ c(ζ2 − ξ)α2 = 0

with coefficients a(1− ξ), b(ζ − ξ), c(ζ2 − ξ) ∈ Q(ζ) would have to have all coefficients equal to 0. We
deduce that 2 of a, b, c must be 0 and so

β =
3
√

5 ∈ { 3
√

2, ζ
3
√

2, ζ2
3
√

2}

This can’t be because then 3
√

5/2 ∈ Q(ζ) and β/α has degree 3 over Q whereas Q(ζ) is quadratic over
Q.
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