
Math 30820 Honors Algebra 4

Homework 8

Andrei Jorza

Due Wednesday, 3/22/2017

Do 6 of the following questions. Some questions may be obligatory. Artin a.b.c means
chapter a, section b, exercise c. You may use any problem to solve any other problem.

Throughout this problem set Φn(X) is the n-th cyclotomic polynomial.

1. For a positive integer n we denote by s(n) the largest square-free divisor of n. Show that

Φn(X) = Φs(n)(X
n/s(n))

[Hint: Use the Möbius inversion formula.]

Proof. From class

Φn(X) =
∏
d|n

(Xn/d − 1)µ(d)

and since µ(d) = 0 unless d is square-free we get

Φn(X) =
∏

d|n,d square-free

(Xn/d − 1)µ(d)

The set of square-free divisors d of n is the same as the set of divisors of s(n) (by factorization into
primes) so

Φn(X) =
∏
d|s(n)

(Xn/d − 1)µ(d) =
∏
d|s(n)

((Xn/s(n))s(n)/d − 1)µ(d) = Φs(n)(X
n/s(n))

2. Show that

Φn(1) =


0 n = 1

p n = pa

1 n = pa11 · · · p
ak
k , k ≥ 2

[Hint: Use induction.]

Proof. Since Φ1(X) = X − 1 we get that

(Xn − 1)/(X − 1) =
∏

d|n,d6=1

Φd(X)
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so using L’Hôpital we get n =
∏

d|n,d6=1

Φd(1). We now prove by induction on n. Suppose we know the

formula for integers < n. Then

Φn(1) =
n∏

d|n,d6=1,n Φd(1)

As Φd(1) = 1 if d < n is not a prime power by the inductive hypothesis we can rewrite this as

Φn(1) =
n∏

pk|n Φpk(1)
=

n∏
pk|n,pk 6=n p

When n is not a prime power then
∏

pk|n,pk 6=n

p is exactly the power of p in the factorization of n, for

each prime p. Therefore the answer is Φn(1) = 1. If n = pm then
∏

pk|n,pk 6=n

p = pm−1 as we need to

omit the divisor pm. Then Φpm(1) = p.

3. Show that ∏
1≤k≤n,(k,n)=1

sin

(
kπ

n

)
=

Φn(1)

2ϕ(n)

where ϕ is Euler’s function. Remark that Φn(1) is computed in the previous problem. [Hint: Write
Φn(1) as a product over the primitive roots of 1 and use double angle formulas.]

Proof. We have

Φn(1) =
∏

(k,n)=1

(1− ζkn)

=
∏

(k,n)=1

(1− cos(2πk/n)− i sin(2πk/n))

=
∏

(k,n)=1

2 sin(πk/n)(sin(πk/n)− i cos(πk/n))

= 2ϕ(n)
∏

(k,n)=1

sin(πk/n)
∏

(k,n)=1

eπik/n−πi/2

therefore it suffices to show that the last product is 1. But this is∏
(k,n)=1

eπik/n−πi/2 = e−πiϕ(n)/2e
∑

(k,n)=1 πik/n

Note that (k, n) = 1 iff (n − k, n) = 1 so in the sum
∑

(k,n)=1 k we can pair k and n − k and we find∑
(k,n)=1 k = nϕ(n)/2. Therefore the last product is

eπinϕ(n)/(2n)−πiϕ(n)/2 = 1

4. Let p be a prime. Let F be the union of the fields of rational functions Fp(x) ⊂ Fp( p
√
x) ⊂ Fp( p2

√
x) ⊂

. . . ⊂ Fp( pn
√
x) ⊂ . . .. Show that F is the smallest perfect field containing Fp(x).
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Proof. First, note that the union F of these fields of rational functions is a field itself. Indeed, if
F0 ⊂ F1 ⊂ . . . are fields then F =

⋃
Fn is a field. If x, y ∈ F then x, y ∈ Fn for n large enough

and then x + y, xy, x/y ∈ Fn ⊂ F so F is a field. If a ∈ F =
⋃
Fp( pn

√
x) then a = f( pn

√
x) for a

rational function f(y) ∈ Fp(y) and n large enough. But then (f( pn+1√
x)p = f( pn

√
x) = a and since

f( pn+1√
x) ∈ Fp( pn+1√

x) ⊂ F we deduce that φ(y) = yp is surjective on F . Therefore F is perfect.

Suppose F is perfect and contains Fp(x). We’ll prove by induction that Fp( pn
√
x) ⊂ F . The base case

is n = 1. There exists a ∈ F such that φ(a) = x and so ap = x. But then (a − p
√
x)p = 0 so a = p

√
x

which means that p
√
x ∈ F and so Fp( p

√
x) ⊂ F as well. For the inductive step we can use the above

argument replacing x by pn
√
x.

5. Let p be a prime and K = Q(ζp,
p
√

2) be the splitting field of Xp − 2 ∈ Q[X]. Show that Gal(K/Q) is

isomorphic to the subgroup of GL(2,Fp) consisting of matrices of the form

(
a b
0 1

)
. (Recall from last

semester that this group, in turn, is of the form Fp o F×p .)

Proof. In class we showed that if g =

(
a b

1

)
∈ GL(2,Fp) then we get σg ∈ Gal(K/Q) that sends

ζp to ζap and ζ = p
√

2 to ζbpα. We also showed that this was a bijection. It suffices to check that it
is a group homomorphism. Certainly σI2 is the identity automorphism so we only need to show that

σg ◦ σh = σgh. If g =

(
a b

1

)
and h =

(
c d

1

)
then gh =

(
ac ad+ b

1

)
. To verify the composition

we only need to show that the two sides agree on ζp and on α. But

σg ◦ σh(ζp) = σg(ζ
c
p) = σg(ζp)

c = ζacp = ζgh(ζp)

and
ζg ◦ ζh(α) = ζg(ζ

d
pα) = ζg(ζp)

dζg(α) = ζadp ζbpα = ζgh(α)

6. Let K be the splitting field over Q of X8−2. Show that Gal(K,Q(i)) ∼= Z/8Z and Gal(K/Q(
√

2)) ∼= D8,
the dihedral group with 8 elements.

Proof. Write α = 8
√

2. We saw in class that ζ8 = (1 + i)/
√

2 and so K = Q(ζ8, α) = Q(i, α). Then
σ ∈ Gal(K/Q) is uniquely determined by σ(i) ∈ {±i} and σ(α) ∈ {ζa8α|0 ≤ a < 8}. Since there are 16
possible choices for ±i and a, and [K : Q] = 16 (from class), each choice yields a Galois automorphism.
Denote by σ±,a the Galois automorphism such that σ±,a(i) = ±i and σ±,a(α) = ζa8α.

If σ±,a ∈ Gal(K/Q(
√

2)) it follows that σ±,a(
√

2) =
√

2. But σ±,a(
√

2) = σ±,a(α)4 = ζ4a8 α4 =
(−1)a

√
2. Therefore Gal(K/Q(

√
2)) = {σ±,a | 2 | a}. Let σ = σ+,2, sending i to i and α to iα, and

τ = σ−,0, sending i to −i and α to α. Then σ4 = 1 and τ2 = 1 and τστ = σ−1 as they both send i
to i and α to −iα. Since σ and τ generated D8 and Gal(Q(i, α)/Q(

√
2)) has order 8 we deduce that

Gal(K/Q(
√

2)) ∼= D8.

Similarly, σε,a ∈ Gal(K/Q(i)) iff σε,a(i) = i, i.e., iff ε = 0. Write σ = σ0,1. Then σ(α) = ζ8α, σ(i) = i
and σ(ζ8) = (1 + i)/σ(

√
2) = (1 + i)/σ(α)4 = −ζ8. We deduce that σ has order 8 and therefore

Gal(K/Q(i)) = 〈σ〉 ∼= Z/8Z.

7. Let α1 =
√

1 +
√

3, α2 =
√

1−
√

3, two roots of the irreducible polynomial X4 − 2X2 − 2 ∈ Q[X].

(a) Show that Q(α1) ∩Q(α2) = Q(
√

3).

(b) Show that Q(α1), Q(α2) and Q(α1, α2) are Galois over Q(
√

3) and that Gal(Q(α1, α2)/Q(
√

3)) ∼=
(Z/2Z)2.
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Proof. (a): Since Q(α1) and Q(α2) have order 4 over Q and it’s clear that Q(
√

3) is in the intersection,
either the intersection is Q(

√
3) or Q(α1) = Q(α2). However, Q(α1) ⊂ R whereas Q(α2) is not in R.

(b): Q(α1) and Q(α2) are quadratic over Q(
√

3) so they are Galois with Galois group Z/2Z. Therefore
their composite Q(α1, α2) is also Galois over Q and has Galois group (Z/2Z)2.

8. Show that K = Q(
√

2 +
√

2) is Galois over Q and that Gal(K/Q) ∼= Z/4Z.

Proof. The roots of the minimal polynomial (X2− 2)2− 2 = X4− 4X2 + 2 (irreducible by Eisenstein)

are ±
√

2±
√

2. To show K/Q is Galois it suffices to show that
√

2−
√

2 ∈ K as well. But
√

2−
√

2 =√
2/
√

2 +
√

2 and the RHS fraction is clearly in K.

Let α =
√

2 +
√

2 in which case
√

2 = α2 − 2 and
√

2−
√

2 =
√

2/α. Let σ ∈ Gal(K/Q) defined by

σ(α) =
√

2−
√

2. Then clearly σ(
√

2) = −
√

2 so σ(
√

2−
√

2) = −α. Therefore σ2(α) = −α and so
σ4 = 1 with σ2 6= 1. Thus Gal(K/Q) = 〈σ〉 ∼= Z/4Z.

4


