
Math 30820 Honors Algebra 4

Homework 10

Andrei Jorza

Due Wednesday, 4/5/2017

Do 6 of the following questions. Some questions may be obligatory. Artin a.b.c means
chapter a, section b, exercise c. You may use any problem to solve any other problem.

Throughout this problem set Φn(X) is the n-th cyclotomic polynomial.

1. Suppose K/F is a finite Galois extension and H is a subgroup of Gal(K/F ). Show that σ(KH) =

KσHσ−1

.

Proof. Note that y = σ(x) ∈ σ(KH) if and only if x = σ−1(y) ∈ KH , i.e., iff h(x) = x iff h(σ−1(y)) =

σ−1(y) iff y ∈ KσHσ−1

as desired.

2. Let P (X) ∈ Q[X] be an irreducible polynomial of degree 4 with roots α1, α2, α3, α4. Let β1 = α1α2 +
α3α4, β2 = α1α3 + α2α4 and β3 = α1α4 + α2α3. Show that Q(X) = (X − β1)(X − β2)(X − β3) is an
separable polynomial in Q[X].

Proof. Note that β1−β2 = (α1−α4)(α2−α3) so β1 6= β2 as P (X) is separable (irreducible over perfect
base). Similarly we get Q(X) is separable.

The entire symmetric group S4 acts transitively on {β1, β2, β3} (see Exercise 9-10 from Homework 6
last semester). Therefore Gal(K/Q) ⊂ S4 permutes the set of roots of Q(X) and so fixes Q(X). So
Q(X) ∈ KGal(K/Q)[X] = Q[X].

3. Let p > 2 be a prime such that Q(ζp,
p
√

2) ∩ Q(ζp,
p
√

3) = Q(ζp). Find a homomorphism φ : F×p →
GL(2,Fp) = Aut(F2

p) such that

Gal(Q(ζp,
p
√

2,
p
√

3)/Q) ∼= F2
p oφ F×p

Proof. In class I showed that Gal(Q(ζp,
p
√

2, p
√

3)/Q) consists of pairs {
((

a b
0 1

)
,

(
a d
0 1

))
}. This is

in bijection with F2
poϕF×p the pair

((
a b
0 1

)
,

(
a d
0 1

))
corresponding to (a, (b, c)). It suffices to check

this bijection is a homomorphism for a suitable choice of ϕ..

We compute products in the Galois group as((
a b
0 1

)
,

(
a d
0 1

))((
a′ b′

0 1

)
,

(
a′ d′

0 1

))
=

((
aa′ ab′ + b
0 1

)
,

(
aa′ ad′ + d
0 1

))
In the semidirect product this product is

(a, (b, d)) ·ϕ (a′, (b′, d′)) = (aa′, (b, d) + ϕa(b′, d′))

and comparing with the above formula we see that ϕa(b′, d′) = (ab′, ad′) works. Therefore the Galois
group is ∼= F2

p oϕ F×p where ϕ : F×p → GL(2,Fp) is ϕ(a) = aI2.
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4. Artin 16.1.1 on page 505.

Proof. Let P be the given polynomial, σ = (12), and τ = (123).

(a): Clearly τP = P so A3 fixes P . However, σP = u1u
2
2 + u2u

2
3 + u3u

2
1 = Q and we deduce that

S3P = {P,Q}.
(b): This is symmetric and the easiest way to find the polynomial expression is that

P = (s1 − u1)(s1 − u2)(s1 − u3) = s31 − s1s21 + s2s1 − s3 = s1s2 − s3

(c): This is the discriminant of the polynomial (X − u1)(X − u2)(X − u3) so P is fixed by A3 and any
transposition changed the sign of P so S3P = {±P}.
(d): Again τP = P by inspection and σP = −P so the orbit is S3P = {±P}.
(e): P is symmetric and since u3i − s1u2i + s2ui − s3 = 0 for all i we deduce that∑

u3i = s1
∑

u2i − s2
∑

ui +
∑

s3 = s1(s21 − 2s2)− s1s2 + ns3

5. Artin 16.5.2 on page 507.

Proof. Aut(C(t)/C) ∼= PGL(2,C) and σ corresponds to the matrix A =

(
1 i
1 −i

)
while τ corresponds

to the matrix

(
i −i
1 1

)
. Then A3 = (2i+ 2)I2 and A has order 3 in PGL(2,C) while B3 = (2− 2i)I2

so B has order 3 in PGL(2,C). We further compute that C = AB has order 2. From last semester
we know that A4 is generated by 3-cycles and in fact for A4 two 3-cycles suffice ((123) and (234) for
example). The map A 7→ (123) and B 7→ (234) is then a group isomorphism.

To find C(t)A4 first find C(t)V where V C A4 is the unique proper normal subgroup, isomorphic to
(Z/2Z)2 and consisting of products of disjoint transpositions. Explicitly in terms of the maps σ, τ ,
V = {1, στ, τσ, σ2τσ2} where στ(t) = −t, τσ(t) = −1/t and σ2τσ2(t) = 1/t. Clearly P = t2 + 1/t2 is
fixed by V and since P = (t4 + 1)/t2 with numerator of degree 4 we deduce that [C(t) : C(P )] = 4 and
so C(P ) = C(t)V .

Next, we compute C(t)A4 = C(P )σ as A4 is generated by V and a 3-cycle. We compute σ(P ) =
2(P − 6)/(P + 2) and σ2(P ) = −2(P + 6)/(P − 2). The rational function Q = P + σ(P ) + σ2(P ) =
(t4 + 1)(t8 − 34t4 + 1)/(t2(t4 − 1)2) is then invariant by σ clearly and so Q ∈ C(t)A4 . Again as the
numerator has degree 12 we deduce that C(Q) = C(t)A4 .

6. Artin 16.9.14 on page 509.

Proof. (a): Write ζ = ζ3, α =
3
√

2 +
√

2, u = 3
√

2 and β =
3
√

2−
√

2 = u/α. The splitting field is
K = Q(ζ, α, β) = Q(ζ, u, α). Every automorphism fixing F must take u 7→ ζ∗u and α to either ζ∗α
or ζ∗β. Let σ(u) = ζu and σ(α) = α so necessarily σ(β) = σ(u/α) = ζβ and let τ(u) = ζu and
τ(α) = β so necessarily τ(β) = τ(u/α) = ζu/β = ζα. Then σ has order 3 and τ2(α) = τ(β) = ζα,
τ3(α) = τ(ζα) = ζβ, τ4(α) = τ(ζβ) = ζ2α, τ5(α) = ζ2β and finally τ6(α) = α. We deduce that τ has
order 6. Together σ and τ generate all possible 18 choices for u 7→ ζ∗u and α 7→ ζ∗α or ζ∗β.

Also note that if η = τ2σ2 then η has order 3 and ση = ησ so 〈σ, η〉 ∼= (Z/3Z)2 is the necessarily
unique normal Sylow 3-subgroup of this order 18 group (it is normal as it has index 2). The order 2
element τ3 permutes σ and η and therefore the order 18 group 〈σ, τ〉 ∼= (Z/3Z)2 o Z/2Z where the
homomorphism Z/2Z→ Aut((Z/3Z)2) sends 1 to the antidiagonal matrix in GL(2,F3).
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Now α satisfies the degree 6 polynomial (X3 − 2)2 − 2 over F and this is irreducible by Eisenstein as
from last semester 2 is a prime in Z[ζ] as 2 ≡ 2 (mod 3). We deduce that 6 | [K : F ] and so the Galois
group G = Gal(K/F ) is a subgroup of (Z/3Z)2oZ/2Z of order divisible by 6. Therefore either G is the
whole order 18 semidirect product or is it Z/3ZoZ/2Z. We’ll show that in fact G ∼= (Z/3Z)2 oZ/2Z.

We’ll argue by contradiction. Suppose G has order 6 in which case it is generated by an order 3 and
an order 2 element. The order 3 element is in 〈σ, η〉 and therefore it will stabilize an element γ which

is cubic over Q(
√

2). E.g., ση = τ2 stabilizes γ = α/β = 3

√
2+
√
2

2−
√
2
, etc. Since cubic fields don’t contain

quadratic subfields, γ is then also stabilized by the order 2 element of G so γ ∈ KG = Q, which is not
true as γ is cubic over Q(

√
2).

(b): Again, write ζ = ζ3 and αi =
√

2 + ζiu. The polynomial P (X) = (X2 − 2)3 − 2 = X3 − 6X4 +
12X2 − 10 is irreducible over F again by the Eisenstein irreducibility criterion as 2 is prime in Z[ζ].
Therefore K is the splitting field of P (X) with roots ±αi. Order the roots r1 = α0, r2 = −α0, r3 =
α1, r4 = −α1, r5 = α2, r6 = −α2 and so 6 | [K : Q]. If σ ∈ Gal(K/Q) then σ permutes {r1, . . . , r6}
and σ ∈ S6. Since α2

0 = α2
1/ζ = α2

2/ζ
2 we deduce that σ(α0)2 = σ(α1)2/ζ = σ(α2)2/ζ2. This implies

that σ permutes the pairs {(r1, r2), (r3, r4), (r5, r6)} and therefore G is in the subset of S6 generated
by S3 and (12)(34)(56) where S3 is the group of permutations of the set of three pairs from before.
Let H be this subgroup of S6. Since S3 < H has index 2 it is normal and we see that H = S3 oZ/2Z.
But conjugating by (12)(34)(56) doesn’t affect the pairs (r1, r2), (r3, r4), (r5, r6) and so the conjugation
homomorphism 〈(12)(34)(56)〉 ∼= Z/2Z→ Aut(S3) is trivial and therefore H ∼= S3 ×Z/2Z. We’ll show
that G = H.

We know that 6 | |G| and so G < S3 × Z/2Z of order divisible by 6. We only need to exclude the
case |G| = 6. Let σ ∈ G of order 3. Then σ generates A3 in S3 and therefore cycles through the pairs
(r1, r2), (r3, r4), (r5, r6). But the σ fixes α0α1α2 =

√
10. Comparing degrees it would have to be that

Kσ = Q(ζ,
√

10). However, σ also fixes the sum γ = α0 + α1 + α2 so it would suffice to show that
γ /∈ Q(ζ,

√
10). Otherwise α0 + α1 + α2 = a + b

√
10 for a, b ∈ Q(ζ) so (α0 + α1 + α2 − a)2 = 10b2.

Expanding the LHS yields a cubic whereas 10b2 is quadratic over Q.

7-8 (This is worth 2 problems) Let p be an odd prime. The point of this exercise is to show that Q(ζp2) ∩
Q( p2
√

2) = Q. Write K = Q(ζp2) ∩Q( p2
√

2).

(a) Show that Q(ζp2) ∩Q( p
√

2) = Q.

(b) If K 6= Q show that K/Q is Galois of order p.

(c) Show that KQ( p
√

2) = Q( p2
√

2) and deduce that Q( p2
√

2)/Q( p
√

2) is Galois.

(d) Show that this extension is never Galois and therefore K = Q.

(e) Show that Gal(Q(ζp2 ,
p2
√

2)/Q) is isomorphic to the matrix group {
(
a b
0 1

)
| a ∈ (Z/p2Z)×, b ∈

Z/p2Z}.

Proof. (a): If L = Q(ζp2) ∩ Q( p
√

2) then [L : Q] | [Q( p
√

2) : Q] = p so either L = Q as desired or

Q( p
√

2) ⊂ Q(ζp2). This cannot be as the former is not Galois over Q whereas every subfield of the
cyclotomic field is Galois as Gal(Q(ζp2)/Q) ∼= (Z/p2Z)× is abelian.

(b): Again, K ⊂ Q(ζp2) and so K/Q must be Galois. Moreover, [K : Q] | gcd([Q(ζp2) : Q][Q( p2
√

2) :
Q]) = gcd(p(p− 1), p2) = p. So if K 6= Q then [K : Q] = p.

(c): As Q( p
√

2)/Q is not Galois but K/Q is Galois we deduce, as in (a), that K∩Q( p
√

2) = Q. Therefore

[KQ( p
√

2) : Q( p
√

2)] = [K : Q] = p and by comparing degrees we get KQ( p
√

2) = Q( p2
√

2). Moreover,

KQ( p
√

2)/Q( p
√

2) is Galois with Galois group isomorphic to Gal(K/Q) and so Q( p2
√

2)/Q( p
√

2) is Galois
with Galois group necessarily isomorphic to Z/pZ.
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(d): If Q( p2
√

2)/Q( p
√

2) is Galois then the minimal polynomial Xp− p
√

2 of p2
√

2 over Q[ p
√

2) would have

all roots in Q( p2
√

2). But then ζp ∈ Q( p2
√

2) and this field is in R whereas ζp is not.

(e): Every σ ∈ Gal(Q(ζp2 ,
p2
√

2)/Q) sends ζp2 to ζap2 for some a ∈ (Z/p2Z)× and p2
√

2 to ζbp2
p2
√

2 for

some b ∈ Z/p2Z. There are p3(p − 1) choices for (a, b) and the Galois group has [Q(ζp2 ,
p2
√

2) : Q] =

[Q(ζp2 ,
p2
√

2) : Q( p2
√

2)][Q( p2
√

2) : Q] = [Q(ζp2) : Q][Q( p
√

2) : Q] = p3(p− 1).
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