Math 30820 Honors Algebra 4 Homework 11

Andrei Jorza

Due Wednesday, 4/12/2017

Do 6 of the following questions. Some questions may be obligatory. Artin a.b.c means chapter a, section b, exercise c. You may use any problem to solve any other problem.

Let $C_5 = \mathbb{Z}/5\mathbb{Z}$, D_5 the dihedral group with 10 elements, $F_{20} = \{ \begin{pmatrix} a & b \\ 0 & 1 \end{pmatrix} \in \mathrm{GL}(2, \mathbb{F}_5) \} \cong \mathbb{Z}/5\mathbb{Z} \rtimes (\mathbb{Z}/5\mathbb{Z})^{\times}$. You may take for granted that every transitive subgroup of S_5 is isomorphic to one of the groups C_5, D_5, F_{20}, A_5 and S_5 .

- 1. Let G be a group, F a field, and $\chi_1, \ldots, \chi_n : G \to F^{\times}$ distinct group homomorphisms. Show that the functions χ_i are F-linearly independent, i.e., if $a_1, \ldots, a_n \in F$ and $g \mapsto a_1\chi_1(g) + a_2\chi_2(g) + \cdots + a_n\chi_n(g)$ is the 0 function then all the coefficients a_i are 0. [Hint: Choose a minimal linear dependence and mimick the proof of the fact that a minimal spanning set for a vector space is a basis.]
- 2. Let $P(X) \in \mathbb{Q}[X]$ be an irreducible polynomial of degree n and K its splitting field over \mathbb{Q} . Fixing an ordering of the roots of P(X) consider $\operatorname{Gal}(K/\mathbb{Q})$ as a subgroup of S_n . Let $H < S_n$ be a subgroup and write $S_n/H = \{\sigma_1 H, \ldots, \sigma_d H\}$. Suppose there exists $\theta \in K$ such that $h(\theta) = \theta$ for all $h \in H$

and $\{\sigma_1(\theta), \ldots, \sigma_d(\theta)\}$ are all distinct. Show that $R(X) = \prod_{i=1}^{a} (X - \sigma_i(\theta))$ is a separable polynomial in $\mathbb{Q}[X]$.

- 3. Let K be the splitting field over \mathbb{Q} of the polynomial $P(X) = X^5 5X + 12 \in \mathbb{Q}[X]$.
 - (a) Show that P(X) is irreducible.
 - (b) Show that $10 \mid [K : \mathbb{Q}]$. [Hint: P(X) has two pairs of complex conjugate roots.]
 - (c) Assume that P(X) is solvable by radicals (it is). Show that $\operatorname{Gal}(K/\mathbb{Q}) \cong D_5$, the dihedral group with 10 elements. [Hint: What is the discriminant of P(X)?]
- 4. Artin 16.9.12 on page 509.
- 5. Artin 16.9.13 on page 509.
- 6. Artin 16.9.18 on page 509.
- 7. Artin 16.M.7 part (b) on page 512. (Part (a) we did in class.)
- 8. Let k be a field and t an indeterminate. Recall from a previous homework that we have identified $\operatorname{Aut}(k(t)/k)$ with the group $\operatorname{PGL}(2,k)$ via fractional linear transformations. Suppose $H < \operatorname{PGL}(2,k)$ is a subgroup of order n.
 - (a) Let $P_H(X) = \prod_{h \in H} (X h(t))$. Show that $P_H(X) \in k(t)^H[X]$.
 - (b) Show that $k(t)^H$ is generated over k by the coefficients of $P_H(X)$.

(c) Suppose $k = \mathbb{F}_2$. Show that

$$\mathbb{F}_{2}(t)^{\operatorname{Aut}(\mathbb{F}_{2}(t)/\mathbb{F}_{2})} = \mathbb{F}_{2}\left(\frac{(t^{2}+t+1)^{3}}{t^{2}(t+1)^{2}}\right)$$

[Hint: Recall from last semester that $PGL(2, \mathbb{F}_2) = GL(2, \mathbb{F}_2) \cong S_3$. You don't need the computationally intensive part (b), although it would lead to the same answer..]