Math 30820 Honors Algebra 4 Homework 11

Andrei Jorza

Due Wednesday, 4/12/2017

Do 6 of the following questions. Some questions may be obligatory. Artin a.b.c means chapter a, section b, exercise c. You may use any problem to solve any other problem.

Let $C_5 = \mathbb{Z}/5\mathbb{Z}$, D_5 the dihedral group with 10 elements, $F_{20} = \{ \begin{pmatrix} a & b \\ 0 & 1 \end{pmatrix} \in \mathrm{GL}(2, \mathbb{F}_5) \} \cong \mathbb{Z}/5\mathbb{Z} \rtimes (\mathbb{Z}/5\mathbb{Z})^{\times}$. You may take for granted that every transitive subgroup of S_5 is isomorphic to one of the groups C_5, D_5, F_{20}, A_5 and S_5 .

1. Let G be a group, F a field, and $\chi_1, \ldots, \chi_n : G \to F^{\times}$ distinct group homomorphisms. Show that the functions χ_i are F-linearly independent, i.e., if $a_1, \ldots, a_n \in F$ and $g \mapsto a_1\chi_1(g) + a_2\chi_2(g) + \cdots + a_n\chi_n(g)$ is the 0 function then all the coefficients a_i are 0. [Hint: Choose a minimal linear dependence and mimick the proof of the fact that a minimal spanning set for a vector space is a basis.]

Proof. Consider a linear dependence with smallest (nonzero) number of nonzero coefficients. We can renumber the characters such that this minimal linear dependence is $a_1\chi_1(x) + \cdots + a_m\chi_m(x) = 0$ for all $x \in G$. Since $\chi_1 \neq \chi_m$ there exists $a \in G$ such that $\chi_1(a) \neq \chi_m(a)$. Then for each $x \in G$ have $\sum a_i\chi_i(ax) = 0$ as well which is equivalent to $\sum a_i\chi_i(a)\chi_i(x) = 0$. Subtracting these two dependences we get

$$0 = \sum_{i=1}^{m} a_i (\chi_i(a) - \chi_m(a)) \chi_i(x) = \sum_{i=1}^{m-1} a_i (\chi_i(a) - \chi_m(a)) \chi_i(x)$$

so we get a nontrivial dependence (as $a_1(\chi_1(a) - \chi_m(a)) \neq 0$) with fewer tham *m* terms contradicting the choice of *m*.

2. Let $P(X) \in \mathbb{Q}[X]$ be an irreducible polynomial of degree n and K its splitting field over \mathbb{Q} . Fixing an ordering of the roots of P(X) consider $\operatorname{Gal}(K/\mathbb{Q})$ as a subgroup of S_n . Let $H < S_n$ be a subgroup and write $S_n/H = \{\sigma_1 H, \ldots, \sigma_d H\}$. Suppose there exists $\theta \in K$ such that $h(\theta) = \theta$ for all $h \in H$ and $\{\sigma_1(\theta), \ldots, \sigma_d(\theta)\}$ are all distinct. Show that $R(X) = \prod_{i=1}^d (X - \sigma_i(\theta))$ is a separable polynomial in $\mathbb{Q}[X]$.

Proof. The polynomial is separable by the assumption on its roots. Let $g \in \text{Gal}(K/\mathbb{Q}) \subset S_n$. Then $g \in \sigma_i H$ for some σ_i . In this case

$$g(R(X)) = \prod_{i=1}^{d} (X - g(\sigma_i(\theta)))$$

As $g\sigma_i \in G$ we can write it as $g\sigma_i = \sigma_{i,g}h_{i,g}$ for some $h_{i,g} \in H$. Moreover, for g fixed, if $\sigma_{i,g} = \sigma_{j,g}$ then $g\sigma_i$ and $g\sigma_j$ would be in the same G/H coset. This is impossible as we know that multiplication by g permutes the G/H cosets. Therefore $\{\sigma_{i,g}\}$ is a permutation of $\{\sigma_i\}$ for any fixed $g \in G$.

Now $g(\sigma_i(\theta)) = \sigma_{i,g}(h_{i,g}(\theta)) = \sigma_{i,g}(\theta)$ as H fixed θ . We conclude that

$$g(R(X)) = \prod_{i=1}^{d} (X - g(\sigma_i(\theta))) = \prod_{i=1}^{d} (X - \sigma_{i,g}(\theta)) = \prod_{i=1}^{d} (X - \sigma_i(\theta)) = R(X)$$

so $R(X) \in K^{\operatorname{Gal}(K/\mathbb{Q})}[X] = \mathbb{Q}[X].$

3. Let K be the splitting field over \mathbb{Q} of the polynomial $P(X) = X^5 - 5X + 12 \in \mathbb{Q}[X]$.

- (a) Show that P(X) is irreducible.
- (b) Show that $10 \mid [K : \mathbb{Q}]$. [Hint: P(X) has two pairs of complex conjugate roots.]
- (c) Assume that P(X) is solvable by radicals (it is). Show that $\operatorname{Gal}(K/\mathbb{Q}) \cong D_5$, the dihedral group with 10 elements. [Hint: What is the discriminant of P(X)?]

Proof. (a): If P(X) had a linear term it would have a rational root and as P is monic it would have an integer root. But then this root a would satisfy $a(a^4-5) = 12$ so $a \mid 12$ and no divisor of 12 is a root of P(X). If P(X) were reducible it would therefore be a product P(X) = A(X)B(X) where A is monic quadratic and B is monic cubic of the form $A = X^2 + aX + b$ and $B = X^3 + cX^2 + dX + e$. Multiplying out we'd need a + c = 0, b + ac + d = 0, e + ad + bc = 0, bd + ae = -5 and be = 12. Therefore c = -a, $d = a^2 - b$, e = (b - d)a. We need $a \mid e \mid 12$, b = 12/e. From bd + ae = -5 we get b and e are of opposite parity so $e \in \{\pm 1, \pm 3, \pm 4\}$. We test each of these e and each $a \mid e$ and compute b = 12/e, d = b - e/a and get contradictions. Explicitly: if $e = \pm 1$ then $b = \pm 12$ (same sign) and $a = \pm 1$ (any sign). Then $bd = -5 - ae \in \{-4, -6\}$ and ± 12 does not divide these. If $e = \pm 3$ then $b = \pm 4$ (same sign). We need $b - d = 2b - a^2 \mid e/a \mid 3$. This is impossible if $a = \pm 1$ as $b = \pm 4$ so we'd need $a = \pm 3$ and $2b - 9 = \pm 8 - 9 \mid e/a = \pm 1$ in which case we'd need e = 3, b = 4, $d = a^2 - b = 5$. This contradicts bd + ae = -5. Finally, suppose $e = \pm 4$ and $b = \pm 3$ (same sign). Then $2b - a^2 = \pm 6 - a^2 \mid e/a \mid 4$. The only possibility for this divisibility with $a \mid 4$ is $a = \pm 2$ and b = 3. Then e = 4 and $d = a^2 - b = 1$.

(b): Complex conjugation on \mathbb{C} yields an automorphism of K that fixes \mathbb{Q} as K/\mathbb{Q} is normal. It is nontrivial on K as it interchanges the complex conjugate roots of P(X). Indeed, if P had 5 real roots it would have 4 real critical point but $P'(X) = 5X^4 - 5$ which has only two real roots.

Therefore $2 \mid [K : \mathbb{Q}]$ as we just identified an order 2 element of $\operatorname{Gal}(K/\mathbb{Q})$. Also as P(X) is irreducible we know that $5 = [\mathbb{Q}(\alpha) : \mathbb{Q}] \mid [K : \mathbb{Q}]$ where α is any root of P(X).

(c): We assume that P(X) is solvable by radicals. The Galois group $\operatorname{Gal}(K/\mathbb{Q})$ is one of $S_5, A_5, F_{20}, D_5, C_5$. Solvability gets rid of the nonsolvable groups S_5 and A_5 and part (b) gets rid of C_5 . Therefore $\operatorname{Gal}(K/\mathbb{Q})$ is one of D_5 or F_{20} . The discriminant of P(X) is 8000^2 so $\operatorname{Gal}(K/\mathbb{Q}) \subset A_5$. To show that $\operatorname{Gal}(K/\mathbb{Q}) \cong D_5$ it therefore suffices to show that $F_{20} \not\subset A_5$. But from class we know that F_{20} is the Galois group of $X^5 - 2$ with discriminant 50000 which is not a perfect square. Therefore $F_{20} \not\subset A_5$. \Box

4. Artin 16.9.12 on page 509.

Proof. The polynomials are all irreducible except for $X^4 + X^2 + 1 = (X^2 + 1)^2 - X^2 = (X^2 + X + 1)(X^2 - X + 1)$.

Recall the criterion from class for Galois groups of irreducible quartics. If the discriminant is a square then either A_4 or V. If the resolvent is irreducible it has to be A_4 . If the resolvent splits completely then it has to be V.

If the discriminant is not a square then either S_4 or D or C. It's S_4 only if the resolvent is irreducible. To tell apart D and C recall that it's D if and only if P is irreducible over $\mathbb{Q}(\sqrt{\Delta})$.

Polynomial	Resolvent	Factorization	Discriminant
$X^4 + 4X^2 + 2$	$X^3 - 4X^2 - 8X + 32$	$(X-4) \cdot (X^2-8)$	$2 \cdot 32^2$
$X^4 + 2X^2 + 4$	$X^3 - 2X^2 - 16X + 32$	$(X-4) \cdot (X-2) \cdot (X+4)$	96^{2}
$X^4 + 1$	$X^3 - 4X$	$(X-2) \cdot X \cdot (X+2)$	16^{2}
$X^4 + X + 1$	$X^3 - 4X - 1$	irreducible	229
$X^4 + X^3 + X^2 + X + 1$	$X^3 - X^2 - 3X + 2$	$(X-2) \cdot (X^2 + X - 1)$	125

(a): Since R has a root and Δ is not a square the Galois group is either D or C. From class it is D iff P is irreducible over $\mathbb{Q}(\sqrt{\Delta}) = \mathbb{Q}(\sqrt{2})$. But $P = (X^2 + 2)^2 - 2 = (X^2 + 2 + \sqrt{2})(X^2 + 2 - \sqrt{2})$ so the Galois group is C.

(b): G = V (square Δ , R splits).

(c): G = V in fact $K = \mathbb{Q}(\zeta_8)$ with Galois group $(\mathbb{Z}/8\mathbb{Z})^{\times} \cong (\mathbb{Z}/2\mathbb{Z})^2$. Using the criterion it's as for (b).

- (d): $G = S_4$ (not square Δ , R irreducible).
- (e): This is $\mathbb{Q}(\zeta_5)$ with Galois group $(\mathbb{Z}/5\mathbb{Z})^{\times} \cong \mathbb{Z}/4\mathbb{Z}$.
- (f): P(X) has roots $(\pm 1 \pm \sqrt{-3})/2$ so the splitting field is $\mathbb{Q}(\sqrt{-3})$ with $\mathbb{Z}/2\mathbb{Z}$ Galois group over \mathbb{Q} . \Box
- 5. Artin 16.9.13 on page 509.

Proof. P is irreducible (the easiest way is to note that $P(X + 1) = X^4 + 4X^3 + 4X^2 - 2$ is an Eisenstein polynomial), has discriminant -2^{10} and has resolvent $(X+2)(X^2+4)$. Therefore the Galois group is either D or C. To tell them apart we'd have to factor P(X) over $\mathbb{Q}(\sqrt{-1024}) = \mathbb{Q}(i)$. The roots of P are $\pm\sqrt{1\pm\sqrt{2}}$ and none of them are in $\mathbb{Q}(i)$ so if P factors it factors into quadratics $P(X) = (X^2 + aX + b)(X^2 + cX + d)$. Then c = -a and bd = -1. But Gauss' lemma implies that the two polynomials are in $\mathbb{Z}[i]$ and bd = -1 in $\mathbb{Z}[i]$ means b and d are units in $\{\pm 1, \pm i\}$. Comparing the coefficients of X^2 we get $b - a^2 + d = -2$ and the coefficients of X that a(d - b) = 0. If $a \neq 0$ then b = d and bd = -1 so b = d = i. But in this case we'd need $a^2 = 2 + 2i$ and so $|a|^2 = |2 + 2i| = 8$ so a cannot be in $\mathbb{Z}[i]$. If a = 0 then b + d = -2 so b = d = -1 (as $b, d \in \{\pm 1, \pm i\}$) which contradicts bd = -1.

We deduce that $\operatorname{Gal}(K/\mathbb{Q}) = D$ is the dihedral group with 8 elements $\langle F, R \rangle$ satisfying $F^2 = R^4 = 1$ and $FRF = R^3$. This group has 8 proper subgroups (see for example exercise 9 on homework 8 last semester), namely: 5 subgroups of order 2 with generators R^2, F, FR, FR^2, FR^3 , the cyclic group $\langle R \rangle$, the group $\langle F, R^2 \rangle = \{1, F, R^2, FR^2\} \cong (\mathbb{Z}/2\mathbb{Z})^2$ and the group $\langle R^2, FR \rangle = \{1, R^2, FR, FR^3\} \cong (\mathbb{Z}/2\mathbb{Z})^2$.

Order the roots of P(X) as $\alpha_1 = \sqrt{1 + \sqrt{2}}$, $\alpha_2 = \sqrt{1 - \sqrt{2}}$, $\alpha_3 = -\alpha_1$, $\alpha_4 = -\alpha_2$. Since $\alpha_1\alpha_2 = i$ we see that $K = \mathbb{Q}(i, \alpha_1)$ and F sends i to -i keeping α_1 fixed while R sends i to -i and it sends α_1 to $\alpha_2 = i/\alpha_1$. As permutations F corresponds to $(24) = \begin{pmatrix} \alpha_1 & \alpha_2 & -\alpha_1 & -\alpha_2 \\ \alpha_1 & -\alpha_2 & -\alpha_1 & \alpha_2 \end{pmatrix}$ (swaps α_2 and α_4) while R corresponds to $(1234) = \begin{pmatrix} \alpha_1 & \alpha_2 & -\alpha_1 & -\alpha_2 \\ \alpha_2 & -\alpha_1 & -\alpha_2 & \alpha_1 \end{pmatrix}$.

The fixed fields of order 2 subgroups are quartic over \mathbb{Q} and the fixed fields of order 4 subgroups are quadratic over \mathbb{Q} . Start with the order 4 subgroups. The obvious three quadratic subextensions are $\mathbb{Q}(i), \mathbb{Q}(\sqrt{2})$ and $\mathbb{Q}(i\sqrt{2})$. Since $Ri = -i, R^2i = i, FRi = i, Fi = -i, R\sqrt{2} = R(\alpha_1^2 - 1) = \alpha_2^2 - 1 = -\sqrt{2}$ and $F(\sqrt{2}) = \sqrt{2}$ we see that *i* is fixed by $\langle R^2, FR \rangle, \sqrt{2}$ is fixed by $\langle F, R^2 \rangle$ and $i\sqrt{2}$ by R.

Now for the order 2 subgroups. We already know that R^2 fixes i and $\sqrt{2}$ so $K^{R^2} = \mathbb{Q}(i, \sqrt{2})$. Similarly F fixes α_1 so $K^F = \mathbb{Q}(\alpha_1)$, FR fixes $\alpha_1 - \alpha_2$ so $K^{FR} = \mathbb{Q}(\alpha_1 - \alpha_2)$, FR^2 fixes α_2 so $K^{FR^2} = \mathbb{Q}(\alpha_2)$ and FR^3 fixes $\alpha_1 + \alpha_2$ so $K^{FR^3} = \mathbb{Q}(\alpha_1 + \alpha_2)$.

6. Artin 16.9.18 on page 509.

Proof. Suppose K/F is a Galois extension with $\operatorname{Gal}(K/F) \cong D_4$. Then $K/K^{\langle F \rangle}/K^{\langle F, R^2 \rangle}/F$ are successive quadratic separable extensions. Therefore $K^{\langle F, R^2 \rangle} = F(\sqrt{d})$ for $d \in F$ and $K^{\langle F \rangle} = K^{\langle F, R^2 \rangle}(\sqrt{u})$ for $u \in F(\sqrt{d})$, i.e., $K^{\langle F \rangle} = F(\sqrt{e+f\sqrt{d}})$. But then $\sqrt{e+f\sqrt{d}}$ has minimal polynomial of the form $X^4 + bX^2 + c$. To show K is the splitting field of this polynomial we only need to show that $F(\sqrt{e+f\sqrt{d}})/F$ is not normal. If it were then $\langle F \rangle \lhd D_4$ and we know this to not be true.

7. Artin 16.M.7 part (b) on page 512. (Part (a) we did in class.)

Proof. Write $\sigma \cdot P(x_1, \ldots, x_n) = P(x_{\sigma(1)}, \ldots, x_{\sigma(n)})$. This is a group action of S_n on $F[x_1, \ldots, x_n]$. Suppose P is 1/2-symmetric and define

$$f(x_1,\ldots,x_n) = \sum_{\sigma \in S_n} \sigma \cdot P(x_1,\ldots,x_n)$$

and

$$h(x_1,\ldots,x_n) = \sum_{\sigma \in S_n} \varepsilon(\sigma) \sigma \cdot P(x_1,\ldots,x_n)$$

Then $\sigma \cdot f = \sum_{\tau \in S_n} \sigma \cdot (\tau \cdot P) = \sum_{\tau \in S_n} (\sigma \tau) \cdot P = \sum_{\tau \in S_n} \tau \cdot P = f$ so f is symmetric. Similarly $\sigma \cdot h = \sum_{\tau \in S_n} \sigma \cdot (\varepsilon(\tau)\tau \cdot P) = \sum_{\tau \in S_n} \varepsilon(\tau)(\sigma\tau) \cdot P = \varepsilon(\sigma) \sum_{\tau \in S_n} \varepsilon(\tau)\tau \cdot P = \varepsilon(\sigma)h$ so h is skew-symmetric. It therefore suffices to show that $h = \Delta g$ where g is a symmetric polynomial.

First, if $x_i = x_j$ then $h = (ij)h = \varepsilon((ij))h = -h$ so h = 0. Treating h as a polynomial in x_i shows that h has roots x_j for $j \neq i$. This implies that h is a polynomial multiple of $\prod_{j\neq i}(x_i - x_j)$. Doing this for all i implies that $h = \Delta g$ for a polynomial $g \in F[x_1, \ldots, x_n]$. Now $\sigma \cdot g = \sigma \cdot (h/\Delta) = \sigma \cdot h/\sigma \cdot \Delta = \varepsilon(\sigma)h/(\varepsilon(\sigma)\Delta) = h/\Delta = g$ so g is a symmetric polynomial.

- 8. Let k be a field and t an indeterminate. Recall from a previous homework that we have identified $\operatorname{Aut}(k(t)/k)$ with the group $\operatorname{PGL}(2,k)$ via fractional linear transformations. Suppose $H < \operatorname{PGL}(2,k)$ is a subgroup of order n.
 - (a) Let $P_H(X) = \prod_{h \in H} (X h(t))$. Show that $P_H(X) \in k(t)^H[X]$.
 - (b) Show that $k(t)^H$ is generated over k by the coefficients of $P_H(X)$.
 - (c) Suppose $k = \mathbb{F}_2$. Show that

$$\mathbb{F}_{2}(t)^{\operatorname{Aut}(\mathbb{F}_{2}(t)/\mathbb{F}_{2})} = \mathbb{F}_{2}\left(\frac{(t^{2}+t+1)^{3}}{t^{2}(t+1)^{2}}\right)$$

[Hint: Recall from last semester that $PGL(2, \mathbb{F}_2) = GL(2, \mathbb{F}_2) \cong S_3$. You don't need the computationally intensive part (b), although it would lead to the same answer..]

Proof. (1): If $g \in H$ then $g(P_H(X)) = \prod (X - gh(t)) = P_H(X)$ as multiplication by g permutes H. Thus $P_H(X) \in k(t)[X]^H = k(t)^H[X]$.

(2): Write L for the field generated by the coefficients of $P_H(X)$. Part (1) gives $L \subset k(t)^H$. Then k(t) is the splitting field of $P_H(X)$ over L. Clearly H acts transitively on the roots of $P_H(X)$ (by definition) and so $P_H(X)$ is irreducible over L. Indeed, otherwise H would permute the roots of the irreducible factors of $P_H(X)$ but would not be able to take the root of one irreducible factor to a root of another. Thus k(t) is the splitting field of the irreducible polynomial $P_H(X)$ over L.

Now $[k(t) : L] = \deg P_H(X)$ since k(t) is generated by a single root. But also H is finite so $[k(t) : k(t)^H] = |H|$ from the theorem proven in class. Since these two orders are equal we deduce $k(t)^H = L$ as desired.

(3): Since $\operatorname{GL}(2, \mathbb{F}_2) \cong S_3$ it is generated by $\begin{pmatrix} 1\\ 1 & 1 \end{pmatrix}$ and $\begin{pmatrix} 1\\ 1 & 1 \end{pmatrix}$. These correspond to $t \mapsto 1/(t+1)$ and $t \mapsto 1/t$. Certainly $R(t) = \frac{(t^2+t+1)^3}{t^2(t+1)^2}$ is invaried by both and so $k(R(t)) \subset k(t)^{\operatorname{Aut}}$. From the Exercise 2 on Homework 5 we deduce that [k(t):k(R(t))] = 6 is the largest degree of the numerator and denominator of R(t) and from class $[k(t):k(t)^{\operatorname{Aut}}] = |\operatorname{Aut}| = 6$. We conclude that $k(R(t)) = k(t)^{\operatorname{Aut}}$.