
Math 30820 Honors Algebra 4

Homework 11

Andrei Jorza

Due Wednesday, 4/12/2017

Do 6 of the following questions. Some questions may be obligatory. Artin a.b.c means
chapter a, section b, exercise c. You may use any problem to solve any other problem.

Let C5 = Z/5Z, D5 the dihedral group with 10 elements, F20 = {
(
a b
0 1

)
∈ GL(2,F5)} ∼= Z/5Z o

(Z/5Z)×. You may take for granted that every transitive subgroup of S5 is isomorphic to one of the groups
C5, D5, F20, A5 and S5.

1. Let G be a group, F a field, and χ1, . . . , χn : G→ F× distinct group homomorphisms. Show that the
functions χi are F -linearly independent, i.e., if a1, . . . , an ∈ F and g 7→ a1χ1(g)+a2χ2(g)+· · ·+anχn(g)
is the 0 function then all the coefficients ai are 0. [Hint: Choose a minimal linear dependence and
mimick the proof of the fact that a minimal spanning set for a vector space is a basis.]

Proof. Consider a linear dependence with smallest (nonzero) number of nonzero coefficients. We can
renumber the characters such that this minimal linear dependence is a1χ1(x) + · · ·+ amχm(x) = 0 for
all x ∈ G. Since χ1 6= χm there exists a ∈ G such that χ1(a) 6= χm(a). Then for each x ∈ G have∑
aiχi(ax) = 0 as well which is equivalent to

∑
aiχi(a)χi(x) = 0. Subtracting these two dependences

we get

0 =

m∑
i=1

ai(χi(a)− χm(a))χi(x) =

m−1∑
i=1

ai(χi(a)− χm(a))χi(x)

so we get a nontrivial dependence (as a1(χ1(a)− χm(a)) 6= 0) with fewer tham m terms contradicting
the choice of m.

2. Let P (X) ∈ Q[X] be an irreducible polynomial of degree n and K its splitting field over Q. Fixing an
ordering of the roots of P (X) consider Gal(K/Q) as a subgroup of Sn. Let H < Sn be a subgroup
and write Sn/H = {σ1H, . . . , σdH}. Suppose there exists θ ∈ K such that h(θ) = θ for all h ∈ H

and {σ1(θ), . . . , σd(θ)} are all distinct. Show that R(X) =

d∏
i=1

(X − σi(θ)) is a separable polynomial in

Q[X].

Proof. The polynomial is separable by the assumption on its roots. Let g ∈ Gal(K/Q) ⊂ Sn. Then
g ∈ σiH for some σi. In this case

g(R(X)) =

d∏
i=1

(X − g(σi(θ)))

As gσi ∈ G we can write it as gσi = σi,ghi,g for some hi,g ∈ H. Moreover, for g fixed, if σi,g = σj,g
then gσi and gσj would be in the same G/H coset. This is impossible as we know that multiplication
by g permutes the G/H cosets. Therefore {σi,g} is a permutation of {σi} for any fixed g ∈ G.
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Now g(σi(θ)) = σi,g(hi,g(θ)) = σi,g(θ) as H fixed θ. We conclude that

g(R(X)) =

d∏
i=1

(X − g(σi(θ))) =

d∏
i=1

(X − σi,g(θ)) =

d∏
i=1

(X − σi(θ)) = R(X)

so R(X) ∈ KGal(K/Q)[X] = Q[X].

3. Let K be the splitting field over Q of the polynomial P (X) = X5 − 5X + 12 ∈ Q[X].

(a) Show that P (X) is irreducible.

(b) Show that 10 | [K : Q]. [Hint: P (X) has two pairs of complex conjugate roots.]

(c) Assume that P (X) is solvable by radicals (it is). Show that Gal(K/Q) ∼= D5, the dihedral group
with 10 elements. [Hint: What is the discriminant of P (X)?]

Proof. (a): If P (X) had a linear term it would have a rational root and as P is monic it would have an
integer root. But then this root a would satisfy a(a4−5) = 12 so a | 12 and no divisor of 12 is a root of
P (X). If P (X) were reducible it would therefore be a product P (X) = A(X)B(X) where A is monic
quadratic and B is monic cubic of the form A = X2 +aX+b and B = X3 +cX2 +dX+e. Multiplying
out we’d need a+ c = 0, b+ ac+ d = 0, e+ ad+ bc = 0, bd+ ae = −5 and be = 12. Therefore c = −a,
d = a2 − b, e = (b − d)a. We need a | e | 12, b = 12/e. From bd + ae = −5 we get b and e are of
opposite parity so e ∈ {±1,±3,±4}. We test each of these e and each a | e and compute b = 12/e,
d = b − e/a and get contradictions. Explicitly: if e = ±1 then b = ±12 (same sign) and a = ±1 (any
sign). Then bd = −5 − ae ∈ {−4,−6} and ±12 does not divide these. If e = ±3 then b = ±4 (same
sign). We need b− d = 2b− a2 | e/a | 3. This is impossible if a = ±1 as b = ±4 so we’d need a = ±3
and 2b− 9 = ±8− 9 | e/a = ±1 in which case we’d need e = 3, b = 4, d = a2− b = 5. This contradicts
bd+ ae = −5. Finally, suppose e = ±4 and b = ±3 (same sign). Then 2b− a2 = ±6− a2 | e/a | 4. The
only possibility for this divisibility with a | 4 is a = ±2 and b = 3. Then e = 4 and d = a2 − b = 1.
Then we get a = e/(b− d) = 2 but this then contradicts bd+ ae = −5.

(b): Complex conjugation on C yields an automorphism of K that fixes Q as K/Q is normal. It is
nontrivial on K as it interchanges the complex conjugate roots of P (X). Indeed, if P had 5 real roots
it would have 4 real critical point but P ′(X) = 5X4 − 5 which has only two real roots.

Therefore 2 | [K : Q] as we just identified an order 2 element of Gal(K/Q). Also as P (X) is irreducible
we know that 5 = [Q(α) : Q] | [K : Q] where α is any root of P (X).

(c): We assume that P (X) is solvable by radicals. The Galois group Gal(K/Q) is one of S5, A5, F20, D5, C5.
Solvability gets rid of the nonsolvable groups S5 and A5 and part (b) gets rid of C5. Therefore
Gal(K/Q) is one of D5 or F20. The discriminant of P (X) is 80002 so Gal(K/Q) ⊂ A5. To show that
Gal(K/Q) ∼= D5 it therefore suffices to show that F20 6⊂ A5. But from class we know that F20 is the
Galois group of X5−2 with discriminant 50000 which is not a perfect square. Therefore F20 6⊂ A5.

4. Artin 16.9.12 on page 509.

Proof. The polynomials are all irreducible except for X4 + X2 + 1 = (X2 + 1)2 − X2 = (X2 + X +
1)(X2 −X + 1).

Recall the criterion from class for Galois groups of irreducible quartics. If the discrimiant is a square
then either A4 or V . If the resolvent is irreducible it has to be A4. If the resolvent splits completely
then it has to be V .

If the discriminant is not a square then either S4 or D or C. It’s S4 only if the resolvent is irreducible.
To tell apart D and C recall that it’s D if and only if P is irreducible over Q(

√
∆).
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Polynomial Resolvent Factorization Discriminant
X4 + 4X2 + 2 X3 − 4X2 − 8X + 32 (X − 4) · (X2 − 8) 2 · 322

X4 + 2X2 + 4 X3 − 2X2 − 16X + 32 (X − 4) · (X − 2) · (X + 4) 962

X4 + 1 X3 − 4X (X − 2) ·X · (X + 2) 162

X4 +X + 1 X3 − 4X − 1 irreducible 229
X4 +X3 +X2 +X + 1 X3 −X2 − 3X + 2 (X − 2) · (X2 +X − 1) 125

(a): Since R has a root and ∆ is not a square the Galois group is either D or C. From class it is D iff
P is irreducible over Q(

√
∆) = Q(

√
2). But P = (X2 + 2)2 − 2 = (X2 + 2 +

√
2)(X2 + 2−

√
2) so the

Galois group is C.

(b): G = V (square ∆, R splits).

(c): G = V in fact K = Q(ζ8) with Galois group (Z/8Z)× ∼= (Z/2Z)2. Using the criterion it’s as for
(b).

(d): G = S4 (not square ∆, R irreducible).

(e): This is Q(ζ5) with Galois group (Z/5Z)× ∼= Z/4Z.

(f): P (X) has roots (±1±
√
−3)/2 so the splitting field is Q(

√
−3) with Z/2Z Galois group over Q.

5. Artin 16.9.13 on page 509.

Proof. P is irreducible (the easiest way is to note that P (X + 1) = X4 + 4X3 + 4X2 − 2 is an
Eisenstein polynomial), has discriminant −210 and has resolvent (X+2)(X2 +4). Therefore the Galois
group is either D or C. To tell them apart we’d have to factor P (X) over Q(

√
−1024) = Q(i). The

roots of P are ±
√

1±
√

2 and none of them are in Q(i) so if P factors it factors into quadratics
P (X) = (X2 + aX + b)(X2 + cX + d). Then c = −a and bd = −1. But Gauss’ lemma implies that the
two polynomials are in Z[i] and bd = −1 in Z[i] means b and d are units in {±1,±i}. Comparing the
coefficients of X2 we get b − a2 + d = −2 and the coefficients of X that a(d − b) = 0. If a 6= 0 then
b = d and bd = −1 so b = d = i. But in this case we’d need a2 = 2 + 2i and so |a|2 = |2 + 2i| = 8 so
a cannot be in Z[i]. If a = 0 then b + d = −2 so b = d = −1 (as b, d ∈ {±1,±i}) which contradicts
bd = −1.

We deduce that Gal(K/Q) = D is the dihedral group with 8 elements 〈F,R〉 satisfying F 2 = R4 = 1
and FRF = R3. This group has 8 proper subgroups (see for example exercise 9 on homework 8
last semester), namely: 5 subgroups of order 2 with generators R2, F, FR, FR2, FR3, the cyclic group
〈R〉, the group 〈F,R2〉 = {1, F,R2, FR2} ∼= (Z/2Z)2 and the group 〈R2, FR〉 = {1, R2, FR, FR3} ∼=
(Z/2Z)2.

Order the roots of P (X) as α1 =
√

1 +
√

2, α2 =
√

1−
√

2, α3 = −α1, α4 = −α2. Since α1α2 = i
we see that K = Q(i, α1) and F sends i to −i keeping α1 fixed while R sends i to −i and it sends α1

to α2 = i/α1. As permutations F corresponds to (24) =

(
α1 α2 −α1 −α2

α1 −α2 −α1 α2

)
(swaps α2 and α4)

while R corresponds to (1234) =

(
α1 α2 −α1 −α2

α2 −α1 −α2 α1

)
.

The fixed fields of order 2 subgroups are quartic over Q and the fixed fields of order 4 subgroups are
quadratic over Q. Start with the order 4 subgroups. The obvious three quadratic subextensions are
Q(i), Q(

√
2) and Q(i

√
2). Since Ri = −i, R2i = i, FRi = i, Fi = −i, R

√
2 = R(α2

1−1) = α2
2−1 = −

√
2

and F (
√

2) =
√

2 we see that i is fixed by 〈R2, FR〉,
√

2 is fixed by 〈F,R2〉 and i
√

2 by R.

Now for the order 2 subgroups. We already know that R2 fixes i and
√

2 so KR2

= Q(i,
√

2). Similarly

F fixes α1 so KF = Q(α1), FR fixes α1 − α2 so KFR = Q(α1 − α2), FR2 fixes α2 so KFR2

= Q(α2)

and FR3 fixes α1 + α2 so KFR3

= Q(α1 + α2).

6. Artin 16.9.18 on page 509.
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Proof. Suppose K/F is a Galois extension with Gal(K/F ) ∼= D4. Then K/K〈F 〉/K〈F,R
2〉/F are succes-

sive quadratic separable extensions. Therefore K〈F,R
2〉 = F (

√
d) for d ∈ F and K〈F 〉 = K〈F,R

2〉(
√
u)

for u ∈ F (
√
d), i.e., K〈F 〉 = F (

√
e+ f

√
d). But then

√
e+ f

√
d has minimal polynomial of the

form X4 + bX2 + c. To show K is the splitting field of this polynomial we only need to show that

F (

√
e+ f

√
d)/F is not normal. If it were then 〈F 〉CD4 and we know this to not be true.

7. Artin 16.M.7 part (b) on page 512. (Part (a) we did in class.)

Proof. Write σ · P (x1, . . . , xn) = P (xσ(1), . . . , xσ(n)). This is a group action of Sn on F [x1, . . . , xn].

Suppose P is 1/2-symmetric and define

f(x1, . . . , xn) =
∑
σ∈Sn

σ · P (x1, . . . , xn)

and
h(x1, . . . , xn) =

∑
σ∈Sn

ε(σ)σ · P (x1, . . . , xn)

Then σ · f =
∑
τ∈Sn

σ · (τ · P ) =
∑
τ∈Sn

(στ) · P =
∑
τ∈Sn

τ · P = f so f is symmetric. Similarly
σ · h =

∑
τ∈Sn

σ · (ε(τ)τ · P ) =
∑
τ∈Sn

ε(τ)(στ) · P = ε(σ)
∑
τ∈Sn

ε(τ)τ · P = ε(σ)h so h is skew-
symmetric. It therefore suffices to show that h = ∆g where g is a symmetric polynomial.

First, if xi = xj then h = (ij)h = ε((ij))h = −h so h = 0. Treating h as a polynomial in xi shows that
h has roots xj for j 6= i. This implies that h is a polynomial multiple of

∏
j 6=i(xi − xj). Doing this for

all i implies that h = ∆g for a polynomial g ∈ F [x1, . . . , xn]. Now σ · g = σ · (h/∆) = σ · h/σ ·∆ =
ε(σ)h/(ε(σ)∆) = h/∆ = g so g is a symmetric polynomial.

8. Let k be a field and t an indeterminate. Recall from a previous homework that we have identified
Aut(k(t)/k) with the group PGL(2, k) via fractional linear transformations. Suppose H < PGL(2, k)
is a subgroup of order n.

(a) Let PH(X) =
∏
h∈H

(X − h(t)). Show that PH(X) ∈ k(t)H [X].

(b) Show that k(t)H is generated over k by the coefficients of PH(X).

(c) Suppose k = F2. Show that

F2(t)Aut(F2(t)/F2) = F2

(
(t2 + t+ 1)3

t2(t+ 1)2

)
[Hint: Recall from last semester that PGL(2,F2) = GL(2,F2) ∼= S3. You don’t need the compu-
tationally intensive part (b), although it would lead to the same answer..]

Proof. (1): If g ∈ H then g(PH(X)) =
∏

(X − gh(t)) = PH(X) as multiplication by g permutes H.
Thus PH(X) ∈ k(t)[X]H = k(t)H [X].

(2): Write L for the field generated by the coefficients of PH(X). Part (1) gives L ⊂ k(t)H . Then k(t)
is the splitting field of PH(X) over L. Clearly H acts transitively on the roots of PH(X) (by definition)
and so PH(X) is irreducible over L. Indeed, otherwise H would permute the roots of the irreducible
factors of PH(X) but would not be able to take the root of one irreducible factor to a root of another.
Thus k(t) is the splitting field of the irreducible polynomial PH(X) over L.

Now [k(t) : L] = degPH(X) since k(t) is generated by a single root. But also H is finite so [k(t) :
k(t)H ] = |H| from the theorem proven in class. Since these two orders are equal we deduce k(t)H = L
as desired.
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(3): Since GL(2,F2) ∼= S3 it is generated by

(
1

1 1

)
and

(
1

1

)
. These correspond to t 7→ 1/(t+ 1)

and t 7→ 1/t. Certainly R(t) = (t2+t+1)3

t2(t+1)2 is invaried by both and so k(R(t)) ⊂ k(t)Aut. From the

Exercise 2 on Homework 5 we deduce that [k(t) : k(R(t))] = 6 is the largest degree of the numerator and
denominator of R(t) and from class [k(t) : k(t)Aut] = |Aut | = 6. We conclude that k(R(t)) = k(t)Aut.
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