Math 30820 Honors Algebra 4 Homework 11

Andrei Jorza

Due Wednesday, 4/12/2017

Do 6 of the following questions. Some questions may be obligatory. Artin a.b.c means chapter a, section b, exercise c. You may use any problem to solve any other problem.

Let $C_{5}=\mathbb{Z} / 5 \mathbb{Z}, D_{5}$ the dihedral group with 10 elements, $F_{20}=\left\{\left(\begin{array}{ll}a & b \\ 0 & 1\end{array}\right) \in \operatorname{GL}\left(2, \mathbb{F}_{5}\right)\right\} \cong \mathbb{Z} / 5 \mathbb{Z} \rtimes$ $(\mathbb{Z} / 5 \mathbb{Z})^{\times}$. You may take for granted that every transitive subgroup of S_{5} is isomorphic to one of the groups $C_{5}, D_{5}, F_{20}, A_{5}$ and S_{5}.

1. Let G be a group, F a field, and $\chi_{1}, \ldots, \chi_{n}: G \rightarrow F^{\times}$distinct group homomorphisms. Show that the functions χ_{i} are F-linearly independent, i.e., if $a_{1}, \ldots, a_{n} \in F$ and $g \mapsto a_{1} \chi_{1}(g)+a_{2} \chi_{2}(g)+\cdots+a_{n} \chi_{n}(g)$ is the 0 function then all the coefficients a_{i} are 0 . [Hint: Choose a minimal linear dependence and mimick the proof of the fact that a minimal spanning set for a vector space is a basis.]

Proof. Consider a linear dependence with smallest (nonzero) number of nonzero coefficients. We can renumber the characters such that this minimal linear dependence is $a_{1} \chi_{1}(x)+\cdots+a_{m} \chi_{m}(x)=0$ for all $x \in G$. Since $\chi_{1} \neq \chi_{m}$ there exists $a \in G$ such that $\chi_{1}(a) \neq \chi_{m}(a)$. Then for each $x \in G$ have $\sum a_{i} \chi_{i}(a x)=0$ as well which is equivalent to $\sum a_{i} \chi_{i}(a) \chi_{i}(x)=0$. Subtracting these two dependences we get

$$
0=\sum_{i=1}^{m} a_{i}\left(\chi_{i}(a)-\chi_{m}(a)\right) \chi_{i}(x)=\sum_{i=1}^{m-1} a_{i}\left(\chi_{i}(a)-\chi_{m}(a)\right) \chi_{i}(x)
$$

so we get a nontrivial dependence (as $\left.a_{1}\left(\chi_{1}(a)-\chi_{m}(a)\right) \neq 0\right)$ with fewer tham m terms contradicting the choice of m.
2. Let $P(X) \in \mathbb{Q}[X]$ be an irreducible polynomial of degree n and K its splitting field over \mathbb{Q}. Fixing an ordering of the roots of $P(X)$ consider $\operatorname{Gal}(K / \mathbb{Q})$ as a subgroup of S_{n}. Let $H<S_{n}$ be a subgroup and write $S_{n} / H=\left\{\sigma_{1} H, \ldots, \sigma_{d} H\right\}$. Suppose there exists $\theta \in K$ such that $h(\theta)=\theta$ for all $h \in H$ and $\left\{\sigma_{1}(\theta), \ldots, \sigma_{d}(\theta)\right\}$ are all distinct. Show that $R(X)=\prod_{i=1}^{d}\left(X-\sigma_{i}(\theta)\right)$ is a separable polynomial in $\mathbb{Q}[X]$.

Proof. The polynomial is separable by the assumption on its roots. Let $g \in \operatorname{Gal}(K / \mathbb{Q}) \subset S_{n}$. Then $g \in \sigma_{i} H$ for some σ_{i}. In this case

$$
g(R(X))=\prod_{i=1}^{d}\left(X-g\left(\sigma_{i}(\theta)\right)\right)
$$

As $g \sigma_{i} \in G$ we can write it as $g \sigma_{i}=\sigma_{i, g} h_{i, g}$ for some $h_{i, g} \in H$. Moreover, for g fixed, if $\sigma_{i, g}=\sigma_{j, g}$ then $g \sigma_{i}$ and $g \sigma_{j}$ would be in the same G / H coset. This is impossible as we know that multiplication by g permutes the G / H cosets. Therefore $\left\{\sigma_{i, g}\right\}$ is a permutation of $\left\{\sigma_{i}\right\}$ for any fixed $g \in G$.

Now $g\left(\sigma_{i}(\theta)\right)=\sigma_{i, g}\left(h_{i, g}(\theta)\right)=\sigma_{i, g}(\theta)$ as H fixed θ. We conclude that

$$
g(R(X))=\prod_{i=1}^{d}\left(X-g\left(\sigma_{i}(\theta)\right)\right)=\prod_{i=1}^{d}\left(X-\sigma_{i, g}(\theta)\right)=\prod_{i=1}^{d}\left(X-\sigma_{i}(\theta)\right)=R(X)
$$

so $R(X) \in K^{\operatorname{Gal}(K / \mathbb{Q})}[X]=\mathbb{Q}[X]$.
3. Let K be the splitting field over \mathbb{Q} of the polynomial $P(X)=X^{5}-5 X+12 \in \mathbb{Q}[X]$.
(a) Show that $P(X)$ is irreducible.
(b) Show that $10 \mid[K: \mathbb{Q}]$. [Hint: $P(X)$ has two pairs of complex conjugate roots.]
(c) Assume that $P(X)$ is solvable by radicals (it is). Show that $\operatorname{Gal}(K / \mathbb{Q}) \cong D_{5}$, the dihedral group with 10 elements. [Hint: What is the discriminant of $P(X)$?]

Proof. (a): If $P(X)$ had a linear term it would have a rational root and as P is monic it would have an integer root. But then this root a would satisfy $a\left(a^{4}-5\right)=12$ so $a \mid 12$ and no divisor of 12 is a root of $P(X)$. If $P(X)$ were reducible it would therefore be a product $P(X)=A(X) B(X)$ where A is monic quadratic and B is monic cubic of the form $A=X^{2}+a X+b$ and $B=X^{3}+c X^{2}+d X+e$. Multiplying out we'd need $a+c=0, b+a c+d=0, e+a d+b c=0, b d+a e=-5$ and $b e=12$. Therefore $c=-a$, $d=a^{2}-b, e=(b-d) a$. We need $a|e| 12, b=12 / e$. From $b d+a e=-5$ we get b and e are of opposite parity so $e \in\{ \pm 1, \pm 3, \pm 4\}$. We test each of these e and each $a \mid e$ and compute $b=12 / e$, $d=b-e / a$ and get contradictions. Explicitly: if $e= \pm 1$ then $b= \pm 12$ (same sign) and $a= \pm 1$ (any sign). Then $b d=-5-a e \in\{-4,-6\}$ and ± 12 does not divide these. If $e= \pm 3$ then $b= \pm 4$ (same sign). We need $b-d=2 b-a^{2}|e / a| 3$. This is impossible if $a= \pm 1$ as $b= \pm 4$ so we'd need $a= \pm 3$ and $2 b-9= \pm 8-9 \mid e / a= \pm 1$ in which case we'd need $e=3, b=4, d=a^{2}-b=5$. This contradicts $b d+a e=-5$. Finally, suppose $e= \pm 4$ and $b= \pm 3$ (same sign). Then $2 b-a^{2}= \pm 6-a^{2}|e / a| 4$. The only possibility for this divisibility with $a \mid 4$ is $a= \pm 2$ and $b=3$. Then $e=4$ and $d=a^{2}-b=1$. Then we get $a=e /(b-d)=2$ but this then contradicts $b d+a e=-5$.
(b): Complex conjugation on \mathbb{C} yields an automorphism of K that fixes \mathbb{Q} as K / \mathbb{Q} is normal. It is nontrivial on K as it interchanges the complex conjugate roots of $P(X)$. Indeed, if P had 5 real roots it would have 4 real critical point but $P^{\prime}(X)=5 X^{4}-5$ which has only two real roots.
Therefore $2 \mid[K: \mathbb{Q}]$ as we just identified an order 2 element of $\operatorname{Gal}(K / \mathbb{Q})$. Also as $P(X)$ is irreducible we know that $5=[\mathbb{Q}(\alpha): \mathbb{Q}] \mid[K: \mathbb{Q}]$ where α is any root of $P(X)$.
(c): We assume that $P(X)$ is solvable by radicals. The Galois group $\operatorname{Gal}(K / \mathbb{Q})$ is one of $S_{5}, A_{5}, F_{20}, D_{5}, C_{5}$. Solvability gets rid of the nonsolvable groups S_{5} and A_{5} and part (b) gets rid of C_{5}. Therefore $\operatorname{Gal}(K / \mathbb{Q})$ is one of D_{5} or F_{20}. The discriminant of $P(X)$ is 8000^{2} so $\operatorname{Gal}(K / \mathbb{Q}) \subset A_{5}$. To show that $\operatorname{Gal}(K / \mathbb{Q}) \cong D_{5}$ it therefore suffices to show that $F_{20} \not \subset A_{5}$. But from class we know that F_{20} is the Galois group of $X^{5}-2$ with discriminant 50000 which is not a perfect square. Therefore $F_{20} \not \subset A_{5}$.
4. Artin 16.9 .12 on page 509 .

Proof. The polynomials are all irreducible except for $X^{4}+X^{2}+1=\left(X^{2}+1\right)^{2}-X^{2}=\left(X^{2}+X+\right.$ 1) $\left(X^{2}-X+1\right)$.

Recall the criterion from class for Galois groups of irreducible quartics. If the discrimiant is a square then either A_{4} or V. If the resolvent is irreducible it has to be A_{4}. If the resolvent splits completely then it has to be V.
If the discriminant is not a square then either S_{4} or D or C. It's S_{4} only if the resolvent is irreducible. To tell apart D and C recall that it's D if and only if P is irreducible over $\mathbb{Q}(\sqrt{\Delta})$.

Polynomial	Resolvent	Factorization	Discriminant
$X^{4}+4 X^{2}+2$	$X^{3}-4 X^{2}-8 X+32$	$(X-4) \cdot\left(X^{2}-8\right)$	$2 \cdot 32^{2}$
$X^{4}+2 X^{2}+4$	$X^{3}-2 X^{2}-16 X+32$	$(X-4) \cdot(X-2) \cdot(X+4)$	96^{2}
$X^{4}+1$	$X^{3}-4 X$	$(X-2) \cdot X \cdot(X+2)$	16^{2}
$X^{4}+X+1$	$X^{3}-4 X-1$	irreducible	229
$X^{4}+X^{3}+X^{2}+X+1$	$X^{3}-X^{2}-3 X+2$	$(X-2) \cdot\left(X^{2}+X-1\right)$	125

(a): Since R has a root and Δ is not a square the Galois group is either D or C. From class it is D iff P is irreducible over $\mathbb{Q}(\sqrt{\Delta})=\mathbb{Q}(\sqrt{2})$. But $P=\left(X^{2}+2\right)^{2}-2=\left(X^{2}+2+\sqrt{2}\right)\left(X^{2}+2-\sqrt{2}\right)$ so the Galois group is C.
(b): $G=V$ (square Δ, R splits).
(c): $G=V$ in fact $K=\mathbb{Q}\left(\zeta_{8}\right)$ with Galois group $(\mathbb{Z} / 8 \mathbb{Z})^{\times} \cong(\mathbb{Z} / 2 \mathbb{Z})^{2}$. Using the criterion it's as for (b).
(d): $G=S_{4}$ (not square Δ, R irreducible).
(e): This is $\mathbb{Q}\left(\zeta_{5}\right)$ with Galois group $(\mathbb{Z} / 5 \mathbb{Z})^{\times} \cong \mathbb{Z} / 4 \mathbb{Z}$.
(f): $P(X)$ has roots $(\pm 1 \pm \sqrt{-3}) / 2$ so the splitting field is $\mathbb{Q}(\sqrt{-3})$ with $\mathbb{Z} / 2 \mathbb{Z}$ Galois group over \mathbb{Q}.
5. Artin 16.9.13 on page 509 .

Proof. P is irreducible (the easiest way is to note that $P(X+1)=X^{4}+4 X^{3}+4 X^{2}-2$ is an Eisenstein polynomial), has discriminant -2^{10} and has resolvent $(X+2)\left(X^{2}+4\right)$. Therefore the Galois group is either D or C. To tell them apart we'd have to factor $P(X)$ over $\mathbb{Q}(\sqrt{-1024})=\mathbb{Q}(i)$. The roots of P are $\pm \sqrt{1 \pm \sqrt{2}}$ and none of them are in $\mathbb{Q}(i)$ so if P factors it factors into quadratics $P(X)=\left(X^{2}+a X+b\right)\left(X^{2}+c X+d\right)$. Then $c=-a$ and $b d=-1$. But Gauss' lemma implies that the two polynomials are in $\mathbb{Z}[i]$ and $b d=-1$ in $\mathbb{Z}[i]$ means b and d are units in $\{ \pm 1, \pm i\}$. Comparing the coefficients of X^{2} we get $b-a^{2}+d=-2$ and the coefficients of X that $a(d-b)=0$. If $a \neq 0$ then $b=d$ and $b d=-1$ so $b=d=i$. But in this case we'd need $a^{2}=2+2 i$ and so $|a|^{2}=|2+2 i|=8$ so a cannot be in $\mathbb{Z}[i]$. If $a=0$ then $b+d=-2$ so $b=d=-1$ (as $b, d \in\{ \pm 1, \pm i\})$ which contradicts $b d=-1$.
We deduce that $\operatorname{Gal}(K / \mathbb{Q})=D$ is the dihedral group with 8 elements $\langle F, R\rangle$ satisfying $F^{2}=R^{4}=1$ and $F R F=R^{3}$. This group has 8 proper subgroups (see for example exercise 9 on homework 8 last semester), namely: 5 subgroups of order 2 with generators $R^{2}, F, F R, F R^{2}, F R^{3}$, the cyclic group $\langle R\rangle$, the group $\left\langle F, R^{2}\right\rangle=\left\{1, F, R^{2}, F R^{2}\right\} \cong(\mathbb{Z} / 2 \mathbb{Z})^{2}$ and the group $\left\langle R^{2}, F R\right\rangle=\left\{1, R^{2}, F R, F R^{3}\right\} \cong$ $(\mathbb{Z} / 2 \mathbb{Z})^{2}$.
Order the roots of $P(X)$ as $\alpha_{1}=\sqrt{1+\sqrt{2}}, \alpha_{2}=\sqrt{1-\sqrt{2}}, \alpha_{3}=-\alpha_{1}, \alpha_{4}=-\alpha_{2}$. Since $\alpha_{1} \alpha_{2}=i$ we see that $K=\mathbb{Q}\left(i, \alpha_{1}\right)$ and F sends i to $-i$ keeping α_{1} fixed while R sends i to $-i$ and it sends α_{1} to $\alpha_{2}=i / \alpha_{1}$. As permutations F corresponds to $(24)=\left(\begin{array}{cccc}\alpha_{1} & \alpha_{2} & -\alpha_{1} & -\alpha_{2} \\ \alpha_{1} & -\alpha_{2} & -\alpha_{1} & \alpha_{2}\end{array}\right)$ (swaps α_{2} and $\left.\alpha_{4}\right)$ while R corresponds to $(1234)=\left(\begin{array}{cccc}\alpha_{1} & \alpha_{2} & -\alpha_{1} & -\alpha_{2} \\ \alpha_{2} & -\alpha_{1} & -\alpha_{2} & \alpha_{1}\end{array}\right)$.
The fixed fields of order 2 subgroups are quartic over \mathbb{Q} and the fixed fields of order 4 subgroups are quadratic over \mathbb{Q}. Start with the order 4 subgroups. The obvious three quadratic subextensions are $\mathbb{Q}(i), \mathbb{Q}(\sqrt{2})$ and $\mathbb{Q}(i \sqrt{2})$. Since $R i=-i, R^{2} i=i, F R i=i, F i=-i, R \sqrt{2}=R\left(\alpha_{1}^{2}-1\right)=\alpha_{2}^{2}-1=-\sqrt{2}$ and $F(\sqrt{2})=\sqrt{2}$ we see that i is fixed by $\left\langle R^{2}, F R\right\rangle, \sqrt{2}$ is fixed by $\left\langle F, R^{2}\right\rangle$ and $i \sqrt{2}$ by R.
Now for the order 2 subgroups. We already know that R^{2} fixes i and $\sqrt{2}$ so $K^{R^{2}}=\mathbb{Q}(i, \sqrt{2})$. Similarly F fixes α_{1} so $K^{F}=\mathbb{Q}\left(\alpha_{1}\right), F R$ fixes $\alpha_{1}-\alpha_{2}$ so $K^{F R}=\mathbb{Q}\left(\alpha_{1}-\alpha_{2}\right), F R^{2}$ fixes α_{2} so $K^{F R^{2}}=\mathbb{Q}\left(\alpha_{2}\right)$ and $F R^{3}$ fixes $\alpha_{1}+\alpha_{2}$ so $K^{F R^{3}}=\mathbb{Q}\left(\alpha_{1}+\alpha_{2}\right)$.
6. Artin 16.9 .18 on page 509 .

Proof. Suppose K / F is a Galois extension with $\operatorname{Gal}(K / F) \cong D_{4}$. Then $K / K^{\langle F\rangle} / K^{\left\langle F, R^{2}\right\rangle} / F$ are successive quadratic separable extensions. Therefore $K^{\left\langle F, R^{2}\right\rangle}=F(\sqrt{d})$ for $d \in F$ and $K^{\langle F\rangle}=K^{\left\langle F, R^{2}\right\rangle}(\sqrt{u})$ for $u \in F(\sqrt{d})$, i.e., $K^{\langle F\rangle}=F(\sqrt{e+f \sqrt{d}})$. But then $\sqrt{e+f \sqrt{d}}$ has minimal polynomial of the form $X^{4}+b X^{2}+c$. To show K is the splitting field of this polynomial we only need to show that $F(\sqrt{e+f \sqrt{d}}) / F$ is not normal. If it were then $\langle F\rangle \triangleleft D_{4}$ and we know this to not be true.
7. Artin 16.M.7 part (b) on page 512. (Part (a) we did in class.)

Proof. Write $\sigma \cdot P\left(x_{1}, \ldots, x_{n}\right)=P\left(x_{\sigma(1)}, \ldots, x_{\sigma(n)}\right)$. This is a group action of S_{n} on $F\left[x_{1}, \ldots, x_{n}\right]$. Suppose P is $1 / 2$-symmetric and define

$$
f\left(x_{1}, \ldots, x_{n}\right)=\sum_{\sigma \in S_{n}} \sigma \cdot P\left(x_{1}, \ldots, x_{n}\right)
$$

and

$$
h\left(x_{1}, \ldots, x_{n}\right)=\sum_{\sigma \in S_{n}} \varepsilon(\sigma) \sigma \cdot P\left(x_{1}, \ldots, x_{n}\right)
$$

Then $\sigma \cdot f=\sum_{\tau \in S_{n}} \sigma \cdot(\tau \cdot P)=\sum_{\tau \in S_{n}}(\sigma \tau) \cdot P=\sum_{\tau \in S_{n}} \tau \cdot P=f$ so f is symmetric. Similarly $\sigma \cdot h=\sum_{\tau \in S_{n}} \sigma \cdot(\varepsilon(\tau) \tau \cdot P)=\sum_{\tau \in S_{n}} \varepsilon(\tau)(\sigma \tau) \cdot P=\varepsilon(\sigma) \sum_{\tau \in S_{n}} \varepsilon(\tau) \tau \cdot P=\varepsilon(\sigma) h$ so h is skewsymmetric. It therefore suffices to show that $h=\Delta g$ where g is a symmetric polynomial.
First, if $x_{i}=x_{j}$ then $h=(i j) h=\varepsilon((i j)) h=-h$ so $h=0$. Treating h as a polynomial in x_{i} shows that h has roots x_{j} for $j \neq i$. This implies that h is a polynomial multiple of $\prod_{j \neq i}\left(x_{i}-x_{j}\right)$. Doing this for all i implies that $h=\Delta g$ for a polynomial $g \in F\left[x_{1}, \ldots, x_{n}\right]$. Now $\sigma \cdot g=\sigma \cdot(h / \Delta)=\sigma \cdot h / \sigma \cdot \Delta=$ $\varepsilon(\sigma) h /(\varepsilon(\sigma) \Delta)=h / \Delta=g$ so g is a symmetric polynomial.
8. Let k be a field and t an indeterminate. Recall from a previous homework that we have identified Aut $(k(t) / k)$ with the group $\operatorname{PGL}(2, k)$ via fractional linear transformations. Suppose $H<\operatorname{PGL}(2, k)$ is a subgroup of order n.
(a) Let $P_{H}(X)=\prod_{h \in H}(X-h(t))$. Show that $P_{H}(X) \in k(t)^{H}[X]$.
(b) Show that $k(t)^{H}$ is generated over k by the coefficients of $P_{H}(X)$.
(c) Suppose $k=\mathbb{F}_{2}$. Show that

$$
\mathbb{F}_{2}(t)^{\operatorname{Aut}\left(\mathbb{F}_{2}(t) / \mathbb{F}_{2}\right)}=\mathbb{F}_{2}\left(\frac{\left(t^{2}+t+1\right)^{3}}{t^{2}(t+1)^{2}}\right)
$$

[Hint: Recall from last semester that $\operatorname{PGL}\left(2, \mathbb{F}_{2}\right)=\mathrm{GL}\left(2, \mathbb{F}_{2}\right) \cong S_{3}$. You don't need the computationally intensive part (b), although it would lead to the same answer..]

Proof. (1): If $g \in H$ then $g\left(P_{H}(X)\right)=\prod(X-g h(t))=P_{H}(X)$ as multiplication by g permutes H. Thus $P_{H}(X) \in k(t)[X]^{H}=k(t)^{H}[X]$.
(2): Write L for the field generated by the coefficients of $P_{H}(X)$. Part (1) gives $L \subset k(t)^{H}$. Then $k(t)$ is the splitting field of $P_{H}(X)$ over L. Clearly H acts transitively on the roots of $P_{H}(X)$ (by definition) and so $P_{H}(X)$ is irreducible over L. Indeed, otherwise H would permute the roots of the irreducible factors of $P_{H}(X)$ but would not be able to take the root of one irreducible factor to a root of another. Thus $k(t)$ is the splitting field of the irreducible polynomial $P_{H}(X)$ over L.
Now $[k(t): L]=\operatorname{deg} P_{H}(X)$ since $k(t)$ is generated by a single root. But also H is finite so $[k(t)$: $\left.k(t)^{H}\right]=|H|$ from the theorem proven in class. Since these two orders are equal we deduce $k(t)^{H}=L$ as desired.
(3): Since $\operatorname{GL}\left(2, \mathbb{F}_{2}\right) \cong S_{3}$ it is generated by $\left(\begin{array}{ll} & 1 \\ 1 & 1\end{array}\right)$ and $\left(\begin{array}{ll} & 1 \\ 1 & \end{array}\right)$. These correspond to $t \mapsto 1 /(t+1)$ and $t \mapsto 1 / t$. Certainly $R(t)=\frac{\left(t^{2}+t+1\right)^{3}}{t^{2}(t+1)^{2}}$ is invaried by both and so $k(R(t)) \subset k(t)^{\text {Aut }}$. From the Exercise 2 on Homework 5 we deduce that $[k(t): k(R(t))]=6$ is the largest degree of the numerator and denominator of $R(t)$ and from class $\left[k(t): k(t)^{\mathrm{Aut}}\right]=\mid$ Aut $\mid=6$. We conclude that $k(R(t))=k(t)^{\mathrm{Aut}}$.

