
Math 30820 Honors Algebra 4

Homework 12

Andrei Jorza

Due Wednesday, 4/26/2017

Do 8 of the following questions. Some questions may be obligatory. Artin a.b.c means
chapter a, section b, exercise c. You may use any problem to solve any other problem.

1. Consider the variables x1, . . . , xn, t and the Taylor expansion
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Let c1 = x1 + · · · + xn, c2 =
∑
xixj , . . . , cn = x1 · · ·xn be the elementary symmetric polynomials.

Show that
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[Hint: This is really just a question about symmetric polynomials written in terms of elementary
symmetric polynomials.] (The LHS is referred to as the Todd class while the ci are referred to as
Chern classes.)
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and we just need to check that
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Of these only the last one is not straightforward. But
∑
x2i = c21−2c2 so (c21−2c2)2 = (

∑
x2i )

2 = A+2B,
c22 = B + 6c4 + 2C and c1c3 − 4c4 = C. Putting everything together yields the desired formula.
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2. Let P (X) = Xn + an−1X
n−1 + · · · + a1X + a0 ∈ Q[X] be any monic polynomial. Show that for

every ε > 0 there exists a polynomial Q(X) = Xn + bn−1X
n−1 + · · · + b1X + b0 ∈ Q[X] such that

(a) |bk − ak| < ε for all k and (b) Q(X) is irreducible in Q[X]. [Hint: You can produce Q(X) that
satisfies the hypotheses of the Eisenstein irreducibility criterion for a ring of the form R = 1

NZ where
N is large enough.]

Proof. Let p be a prime number that doesn’t divide the denominators of the coefficients ak and let N
be a large integer coprime to p and divisible by all the denominators of the ak and such that p/N < ε/2.
We can always choose N large enough with this latter property. Clearly denominators we may write
ak = sk/N for each k and let tk = bsk/pc. Then bk = ptk/N satisfies |ak−bk| = |sk−ptk|/N < p/N < ε.
Moreover, bk are all divisible by p in the ring 1

NZ. If p2 | b0, i.e., if p | b0 replace t0 by t′0 = t0 + 1
in which case |a0 − b′0| = |s0 − pt′0|/N < 2p/N < ε. Finally the polynomial Q(X) =

∑
Xibi is an

Eisenstein polynomial (see exercise 4 on homework 1) so is irreducible in Q[X] by Gauss’ lemma.

3. Let p be a prime. Show that there exists a monic irreducible polynomial P (X) of degree p with 2
complex conjugate roots are p− 2 real roots. [Hint: Use the previous problem.]

Proof. This is easy. Take P (X) = (X2 + X + 1)
∏p−2
i=1 (X − i). For ε sufficiently small the graphs of

P (X) and any polynomial Q(X) satisfying the previous problem are almost the same and therefore
Q(X) will also have p− 2 real roots. To be more precise it suffices to take ε to be smaller than |P (c)|
for every critical point c that is located between two real roots of P (X). Then Q(X) is irreducible of
degree p and has p− 2 real roots.

4. Show that if G is any finite group there exist finite extensions L/K/Q such that L/K is Galois with
Gal(L/K) ∼= G. [Hint: Embed G into Sp for some prime p and find L as the splitting field of a degree
p irreducible polynomial with exactly two complex roots. Use the previous exercise.]

Proof. Since multiplication by elements of G permutes the set G we get an injection G → Sn where
n = |G|. Let p be a prime p > n and put Sn ⊂ Sp by permuting the first n elements only. Then
G ⊂ Sp. Let Q be an irreducible monic degree p polynomial as in the previous exercise and let K be
its splitting field over Q. If L = KG then K/L is Galois with Gal(K/L) = G as desired.

5. Artin 16.12.6 on page 511.

Proof. In this case the Galois group has only 1 and G as subgroups. Since G is not abelian, G/1 is
not abelian and so G is not solvable. The theorem in class then implies that P is not solvable by
radicals.

6. Artin 16.12.7 on page 511.

Proof. P (X) = X7 −X − 1 is irreducible mod 7 (see midterm) so it is irreducible in Z[X] as well. Let
G ⊂ S7 be the Galois group. The theorem from class implies that G contains a permutation of cycle
type 7, i.e., a 7-cycle. Mod 3 we have X7−X−1 ≡ (X2 +X+2) · (X5 +2X4 +2X3 +2X+1) (mod 3)
and so G contains an element σ of cycle type (2, 5), i.e., σ = cτ where c is a transposition and τ is a
5-cycle disjoint from c. Since c and τ commute we see that σ5 = c5τ5 = c so G contains a transposition.
Since 7 is a prime a previous homework shows that G = S7 as a 7-cycle and a transposition generate
S7.

The theorem in class also shows that you should see the cycle type of this transposition directly
factoring P (X) mod p for some prime p. The smallest such prime is p = 191.

7. Artin 16.M.10 on page 512.
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Proof. Let g(x) =
∏
σ∈Gal(K/F ),σ 6=1 σ(f(x)) ∈ K[X]. Then h(x) = f(x)g(x) =

∏
σ∈Gal(K/F ) σ(f(x))

and so g(h(x)) =
∏
gσ(f(x)) = h(x) as multiplication by g ∈ Gal(K/F ) permutes the elements of the

Galois group. Therefore h(x) ∈ K[X]Gal(K/F ) = F [X].

8-10 (Worth 3 problems) Artin 16.M.11 on page 512. As stated part (c) is incorrect (in fact the example
from class X4 + 5X + 5 gives a contradiction). Prove instead the following version of (c): Show that
γδ and γε are in F .

Proof. First, P (X) is separable because otherwise D = 0 is a square in F .

(a): Write β1 = β, β2 = α1α3 + α2α4 and β3 = α1α4 + α2α3. Then S4 permutes the set {β1, β2, β3}
so we get a homomorphism φ : S4 → S3. The question can be reformulated as finding H = {σ ∈ S4 |
σ(β) = β} = {σ ∈ S4 | φ(σ)(β) = β}, i.e., φ(σ) ∈ 〈1, (23)〉 = {τ ∈ S3 | τ(1) = 1}.
Clearly V = {1, (12)(34), (13)(24), (14)(23)} stabilizes β. To find the group H we only need to deter-
mine φ(σ) for σ among the representatives of S4/V . But S4/A4 = (12)A4 andA4/V = {V, (123)V, (132)V }
so S4/V has as complete set of representatives the permutations σ = (12)a(123)b where a = 0, 1 and
b = 0, 1, 2. Since (123)β1 = β3 and (123)β2 = β1 and (123)β3 = β2 it follows that φ((123)) = (231) ∈
S3. Similarly (12)β1 = β1, (12)β2 = β3 and (12)β3 = β2 so φ((12)) = (23) ∈ S3. Here we used that
R(X) is separable as P (X) is separable.

Therefore (12) ∈ H but (123) /∈ H. Let T = 〈(12), V 〉. Then V ( T ⊂ H and so [T : V ] ≥ 2. Moreover,
[S4 : H] ≥ 3 (as (123) /∈ H) so [S4 : T ] ≥ 3. Therefore [T : H] ≤ 4!/(3 · 2 · 4) = 1 so H = T = 〈(12), V 〉
which then contains V as an index 2 subgroup so H = V t (12)V is the dihedral group of order 8.

Alternatively you could have listed the 24 permutations of S4 and found the 8 that fix β.

(b): γ2 = β2 − 4
∏
αi ∈ F as β ∈ F (from assumptions) and

∏
αi = P (0) ∈ F . Also ε2 = (

∑
αi)

2 −
4(α1+α2)(α3+α4) = (

∑
αi)

2−4(β2+β3). It suffices to show that β2+β3 ∈ F . But this is
∑
bi−β ∈ F

as
∑
βi is a coefficient of the resolvent which is in F [X].

(c): The group D4 from part (a) is generated by (12) and (1324) and (12)(γδ) = γδ and similarly for
(1324). This implies that γδ ∈ F and analogously εδ ∈ F .

(d): If γ = ε = 0 then α1 +α2 = α3 +α4 = A and α1α2 = α3α4 = B so α1, α2 and α3, α4 are the roots
of X2 −AX +B = 0 which contradicts separability.
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