Math 30820 Honors Algebra 4 Homework 13

Andrei Jorza

Due Wednesday, 5/3/2017

Do 4 of the following questions. Some questions may be obligatory. Artin a.b.c means chapter a, section b, exercise c. You may use any problem to solve any other problem.

1. Let K / F be a finite Galois extension, $\sigma \in \operatorname{Gal}(K / F)$ and $x \in K^{\times}$.
(a) Show that $N_{K / F}(x / \sigma(x))=1$.
(b) Show that $\operatorname{Tr}_{K / F}(x-\sigma(x))=0$.

Proof. First, if $\sigma \in G=\operatorname{Gal}(K / F)$ then $\{g \sigma \mid g \in G\}=G$. Therefore $\operatorname{Tr}(\sigma(\alpha))=\sum g \sigma(\alpha)=$ $\sum g(\alpha)=\operatorname{Tr}(\alpha)$ and similarly for the norm. Finally, the results follows from additivity for the trace and multiplicativity for the norm.
2. Suppose K / F is a finite Galois extension with $\operatorname{Gal}(K / F)$ cyclic of order n generated by an automorphism σ. Show that if $\alpha \in K$ has the property $\operatorname{Tr}_{K / F}(\alpha)=0$ then there exists $\beta \in K$ such that $\alpha=\beta-\sigma(\beta)$. [Hint: Similarly to the theorem from class, look at

$$
\frac{1}{\operatorname{Tr}_{K / F}(\theta)} \sum_{i=1}^{n-1} \sigma^{i}(\theta) \sum_{j=0}^{i-1} \sigma^{j}(\alpha)
$$

for suitably chosen θ.]
Proof. From class we can choose θ such that $\operatorname{Tr}(\theta) \neq 0$ and we denote by β the expression in the hint, which now makes sense. We compute (using $\operatorname{Tr}(\theta) \in F$)

$$
\begin{aligned}
\sigma(\beta) & =\frac{1}{\operatorname{Tr}(\theta)} \sum_{i=1}^{n-1} \sigma^{i+1}(\theta) \sum_{j=0}^{i-1} \sigma^{j+1}(\alpha) \\
& =\frac{1}{\operatorname{Tr}(\theta)} \sum_{i=2}^{n} \sigma^{i}(\theta) \sum_{j=0}^{i-2} \sigma^{j+1}(\alpha) \\
& =\frac{1}{\operatorname{Tr}(\theta)} \sum_{i=2}^{n} \sigma^{i}(\theta) \sum_{j=1}^{i-1} \sigma^{j}(\alpha)
\end{aligned}
$$

Since $\sigma^{n}(\alpha)=\alpha$ as σ has order n this expression is

$$
\begin{aligned}
\sigma(\beta) & =\frac{1}{\operatorname{Tr}(\theta)}\left(\sum_{i=2}^{n-1} \sigma^{i}(\theta) \sum_{j=1}^{i-1} \sigma^{j}(\alpha)+\theta \sum_{j=1}^{n-1} \sigma^{j}(\alpha)\right) \\
& =\frac{1}{\operatorname{Tr}(\theta)}\left(\sum_{i=2}^{n-1} \sigma^{i}(\theta) \sum_{j=1}^{i-1} \sigma^{j}(\alpha)+\theta(\operatorname{Tr}(\alpha)-\alpha)\right) \\
& =\frac{1}{\operatorname{Tr}(\theta)}\left(\sum_{i=1}^{n-1} \sigma^{i}(\theta) \sum_{j=1}^{i-1} \sigma^{j}(\alpha)-\theta \alpha\right) \\
& =\frac{1}{\operatorname{Tr}(\theta)}\left(\sum_{i=1}^{n-1} \sigma^{i}(\theta) \sum_{j=0}^{i-1} \sigma^{j}(\alpha)-\sum_{i=1}^{n-1} \sigma^{i}(\theta) \alpha-\theta \alpha\right) \\
& =\beta-\frac{1}{\operatorname{Tr}(\theta)}\left(\sum_{i=1}^{n-1} \sigma^{i}(\theta) \alpha+\theta \alpha\right) \\
& =\beta-\frac{1}{\operatorname{Tr}(\theta)} \operatorname{Tr}(\theta) \alpha \\
& =\beta-\alpha
\end{aligned}
$$

as $\operatorname{Tr}(\alpha)=0$ and $\sum_{j=1}^{i-1}$ is the empty sum when $i=1$.
3. Let $a, b \in \mathbb{Z}$. Find all $(x, y) \in \mathbb{Q}^{2}$ such that $x^{2}+a x y+b y^{2}=1$.

Proof. Rewrite the equation as

$$
(x+a y / 2)^{2}-\Delta(y / 2)^{2}=1
$$

where $\Delta=a^{2}-4 b$. Denote $u=x+a y / 2$ and $v=y / 2$ which yield $y=2 v$ and $x=u-a y / 2=u-a v$. Therefore it suffices to solve $u^{2}-\Delta v^{2}=1$ in \mathbb{Q}.
Let $K=\mathbb{Q}(\sqrt{\Delta})$. If Δ is a square in \mathbb{Q} then $\Delta=d^{2}$ and the equation becomes $u^{2}-d^{2} v^{2}=1$ so $(u-d v)(u+d v)=1$. If $d=0$ then $u^{2}=1$ which yields $u= \pm 1$ and anything for v. If $d \neq 0$ then for any $t \in \mathbb{Q}^{\times}$we get a solution to $u-d v=t$ and $u+d v=1 / t$ with $u=(t+1 / t) / 2$ and $v=(u-t) / d$.
If Δ is not a square in \mathbb{Q} then K / \mathbb{Q} is Galois with quadratic Galois group $\{a+b \sqrt{\Delta} \mapsto a \pm b \sqrt{\Delta}\}$, with σ the unique nontrivial automorphism. Then from class $N_{K / \mathbb{Q}}(u+v \sqrt{\Delta})=u^{2}-\Delta v^{2}$ so $u^{2}-\Delta v^{2}=1$ if and only if $N_{K / \mathbb{Q}}(u+v \sqrt{\Delta})=1$. Hilbert 90 implies this happens if and only if

$$
u+v \sqrt{\Delta}=\frac{a+b \sqrt{\Delta}}{a-b \sqrt{\Delta}}=\frac{a^{2}+\Delta b^{2}}{a^{2}-\Delta b^{2}}+\frac{2 a b \sqrt{\Delta}}{a^{2}-\Delta b^{2}}
$$

for some $a, b \in \mathbb{Q}$. This yields all the solutions.
4. (Correction of Artin 16.M.11.(c)) Keep the notations from 16.M.11. Prove that if $\gamma \neq 0$ then $\delta \gamma \in F$ if and only if $G=C_{4}$. Similarly, prove that if $\varepsilon \neq 0$ then $\delta \varepsilon \in F$ if and only if $G=C_{4}$.

Proof. Recall that $\sigma(\delta)=\varepsilon(\sigma) \delta$ so $\delta \gamma \in F$ (respectively $\delta \varepsilon \in F$) iff $\sigma(\gamma)=\varepsilon(\sigma) \gamma$ (respectively $\sigma(\varepsilon)=\varepsilon(\sigma) \varepsilon)$ for all $\sigma \in G$. Since (12) $\in H$ fixes γ and ε it follows that $\delta \gamma \in F$ (respectively $x h \varepsilon \in F$), when nonzero, if and only if (12) $\notin G$, i.e., iff $G=C_{4}$.

5-6 (Worth 2 problems) Let $L / K / F$ be finite extensions such that L / F is Galois. Write $G=\operatorname{Gal}(L / F)$ and $H=\operatorname{Gal}(L / K)$ and let $\left\{\sigma_{1}, \ldots, \sigma_{n}\right\}$ be a complete set of representatives in G of G / H, i.e., $G / H=\left\{\sigma_{1} H, \ldots, \sigma_{n} H\right\}$. For $\alpha \in K$ define

$$
\mathcal{P}_{\alpha, L}(X)=\prod_{\sigma \in \operatorname{Gal}(L / F) / \operatorname{Gal}(L / K)}(X-\sigma(\alpha))=\prod_{i=1}^{n}\left(X-\sigma_{i}(\alpha)\right)
$$

(a) Show that $\mathcal{P}_{\alpha, L}(X)$ is a well-defined polynomial with coefficients in F. (Careful: K / F need not be Galois.)
(b) Define $\operatorname{Tr}_{K / F, L}(\alpha)$ and $N_{K / F, L}(\alpha)$ as the coefficients of $\mathcal{P}_{\alpha, L}(X)$ as follows:

$$
\mathcal{P}_{\alpha, L}(X)=X^{n}-\operatorname{Tr}_{K / F, L}(\alpha) X^{n-1}+\cdots+(-1)^{n} N_{K / F, L}(\alpha)
$$

Show that $\operatorname{Tr}_{K / F, L}: K \rightarrow F$ is a homomorphism of F-vector spaces and $N_{K / F, L}: K^{\times} \rightarrow F^{\times}$is a group homomorphism.
(c) If L^{\prime} / L is a finite extension such that L^{\prime} / F is Galois show that $\mathcal{P}_{\alpha, L}(X)=\mathcal{P}_{\alpha, L^{\prime}}(X)$.
(d) Deduce that $\mathcal{P}_{\alpha, L}(X)$ (and therefore also $\operatorname{Tr}_{K / F, L}$ and $N_{K / F, L}$) does not depend on the choice of Galois extension L / F. (We can therefore drop the subscript L from notation to obtain trace $\operatorname{Tr}_{K / F}$ and norm $N_{K / F}$ for all finite extensions.)

Proof. (a): Note that $\operatorname{Gal}(L / K)$ fixes α so the expression is well-defined, independent of choices of coset representatives. As in class it suffices to check that $\mathcal{P}_{\alpha, L}(X) \in L[X]^{\operatorname{Gal}(L / F)}$. Let $g \in \operatorname{Gal}(L / F)$. For each σ_{i}, the automorphism $g \sigma_{i}$ lands in one of the cosets $\sigma_{j} H$ and write $g \sigma_{i}=\sigma_{j(g, i)} h_{g, i}$ for some index $j(g, i)$ and some $h_{g, i} \in H$. Note that if $j(g, i)=j\left(g, i^{\prime}\right)$ then $g \sigma_{i} H=g \sigma_{i^{\prime}} H$ which would imply that $\sigma_{i} H=\sigma_{i^{\prime}} H$.
Then

$$
\begin{aligned}
g\left(\mathcal{P}_{\alpha, L}(X)\right) & =\prod\left(X-g \sigma_{i}(\alpha)\right) \\
& =\prod\left(X-\sigma_{j(g, i)} h_{g, i}(\alpha)\right) \\
& =\prod\left(X-\sigma_{j(g, i)}(\alpha)\right) \\
& =\mathcal{P}_{\alpha, L}(X)
\end{aligned}
$$

as $\left\{\sigma_{j(g, i)}\right\}=\left\{\sigma_{i}\right\}$ since all the indices $j(g, i)$ are distinct as i varies.
(b): Follows from the additivity and multiplicativity of each σ_{i}.
(c): Consider the tower $L^{\prime}-L-K-F$ and write $G^{\prime}=\operatorname{Gal}\left(L^{\prime} / K\right), H^{\prime}=\operatorname{Gal}\left(L^{\prime} / K\right)$ and $N=\operatorname{Gal}\left(L^{\prime} / L\right)$. From the main theorem N is normal in G^{\prime} as L / F is Galois. Moreover, from the main theorem and the third isomorphism theorem we get

$$
G / H \cong\left(G^{\prime} / N\right) /\left(H^{\prime} / N\right) \cong G^{\prime} / H^{\prime}
$$

and therefore in the defining expression for $\mathcal{P}_{\alpha, L^{\prime}}$ we may choose representatives $\sigma_{i} \in \operatorname{Gal}\left(L^{\prime} / F\right)$ that correspond to the representatives $\sigma_{i} \in \operatorname{Gal}(L / F)$ under the previous isomorphism. The defining expressions for $\mathcal{P}_{\alpha, L}$ and $\mathcal{P}_{\alpha, L}$ are the same as the third isomorphism theorem map takes the coset representative $\sigma \in \operatorname{Gal}\left(L^{\prime} / F\right)$ to $\sigma \bmod N \in \operatorname{Gal}(L / F)$ and $N \subset \operatorname{Gal}\left(L^{\prime} / K\right)$ fixes α.
(d): Let L, L^{\prime} be two different Galois extensions of F containing K. Let E / F be a Galois extension containing the composite $L L^{\prime}$. Then the previous part shows that

$$
\mathcal{P}_{\alpha, L}(X)=\mathcal{P}_{\alpha, E}(X)=\mathcal{P}_{\alpha, L^{\prime}}(X)
$$

as desired.

