Math 40520 Theory of Number Homework 5

Due Friday 10/5, in class

Do 5 of the following problems.

- 1. Let m and n be two positive integers.
 - (a) If m = nq+r is division with remainder show that as polynomials $X^m 1 = (X^n 1)Q(X) + X^r 1$ is division with remainder.
 - (b) Deduce that as polynomials $(X^m 1, X^n 1) = X^{(m,n)} 1$.
- 2. Find all solutions of the equation $x^3 x 1 \equiv 0 \pmod{5^k}$ for k = 1, 2, 3.
- 3. Solve $x^{11} \equiv 7 \pmod{32}$. (You have two means of solving this: either primitive roots, or Hensel's lemma.)
- 4. Let p > 3 be a prime number. Find a solution in \mathbb{Z}_{p^6} to the equation

$$x^3 \equiv 1 + p^2 \pmod{p^6}$$

- 5. Let p > 2 be a prime number and $k \ge 2$. Show that there exists a unique map $\omega : \mathbb{Z}_p^{\times} \to \mathbb{Z}_{p^k}^{\times}$ such that:
 - (a) $\omega(a)^{p-1} \equiv 1 \pmod{p^k}$ for all $a \in \mathbb{Z}_p^{\times}$,
 - (b) $\omega(a) \equiv a \pmod{p}$ for all $a \in \mathbb{Z}_p^{\times}$, and
 - (c) $\omega(ab) = \omega(a)\omega(b)$ for all $a, b \in \mathbb{Z}_p^{\times}$.
- 6. Find all solutions of the congruence $x^3 + 4x^2 + 19x + 1 \equiv 0 \pmod{147}$. [Hint: $147 = 3 \cdot 7^2$.]
- 7. Show that the diophantine equation $13x^2 + 12y^2 = 1$ has no integral solutions but has solutions mod n for all positive integers n.
- 8. Let p > 2 be a prime number and $k \ge 1$. Show that there exists a primitive root mod $2p^k$.