Math 40520 Theory of Number Homework 7

Due Friday, 11/2

Do 5 of the following problems.

- 1. Let $p, q \equiv 3 \pmod{4}$ be two distinct primes and n = pq. Suppose a is a perfect square modulo n and $y = a^2 \mod n$. Show that a is the only one of the four solutions to the equation $x^2 \equiv y \pmod{n}$ which is a perfect square mod n.
- 2. Let p > 5 be a prime number and write $P = \{1, 2, \dots, (p-1)/2\}$. Show that $x \in P$ is such that

$$5x \in 5P \cap (-P)$$

if and only if

$$\left\lceil \frac{p+1}{10} \right\rceil \le x \le \left\lfloor \frac{p-1}{5} \right\rfloor \text{ or } \left\lceil \frac{3p+1}{10} \right\rceil \le x \le \left\lfloor \frac{2p-1}{5} \right\rfloor$$

and conclude that for p > 5,

$$\begin{pmatrix} 5\\ p \end{pmatrix} = \begin{cases} 1 & \text{if } p \equiv \pm 1, \pm 9 \pmod{20} \\ -1 & \text{if } p \equiv \pm 3, \pm 7 \pmod{20} \end{cases}$$

and remark that this is equivalent to the simpler statement

$$\binom{5}{p} = \begin{cases} 1 & \text{if } p \equiv \pm 1 \pmod{5} \\ -1 & \text{if } p \equiv \pm 2 \pmod{5} \end{cases}$$

- 3. Let p be an odd prime. Suppose that $a \neq 0$ is a square mod p. Show that a is a square mod p^n for every $n \geq 1$.
- 4. Let a be an odd integer and $n \ge 3$ be an integer. Show that a is a square modulo 2^n if and only if $a \equiv 1 \pmod{8}$. [Hint: In class we showed that 17 is a square mod 2^n and indeed $17 \equiv 1 \pmod{8}$.]
- 5. Let p > 3 be a prime. What is the sum modulo p of all the quadratic residues mod p?
- 6. Show that $(x^2 13)(x^2 17)(x^2 13 \cdot 17) = 0$ has no rational solutions but has solutions modulo n for every positive integer n.
- 7. Exercise 4.4 on page 90 in the textbook.
- 8. Exercise 4.7 on page 90 in the textbook.