Math 43900 Problem Solving
 Fall 2018
 Lecture 11 Inequalities

Andrei Jorza

1 Problems

1.1 AM-GM, Completing the square, Cauchy-Schwarz, Chebyshev
 Easier

1. [Hint: Areas vary quadratically.]
2. [Hint: Use calc 3 if you're up for it, but it's much easier with Cauchy-Schwarz. For the latter, maximize $\left.f(x, y, z)^{2} ..\right]$
3. [Hint: Apply Cauchy-Schwarz twice..]

Harder

4. [Hint: Apply Cauchy-Schwarz to $n-1$ terms where one is $a_{i}+a_{j} .$.]
5. [Hint: Use the idea of Chebyshev..]

1.2 Inequalities in calculus and geometry

Easier

6. [Hint: Compute the area of the triangle in terms of p and r, and then use that $A=\sqrt{p(p-a)(p-b)(p-c) . .] ~}$
7. [Hint: Express the sum in terms of $f(x) .$.]
8. [Hint: Calculus.]

Harder

9. [Hint: Show that $f(x, y)+2\left(x^{2}+y^{2}\right)$ has a minimum..]
10. [Hint: Compare $2 P(z)$ with $1+\frac{1}{1-z} .$.]

1.3 Miscellaneous

Easier
11. [Hint: Use trig substitutions..]
12. [Hint: Take logs and then use Riemann sums..]

Harder

13. [Hint: Count $k \leq n$ such that $\delta(m) / m$ has a particular value..]

1.4 Extra problems

Easier

14. [Hint: Complete the square..]
15. [Hint: Calculus.]
16. [Hint: What's the case of equality in Cauchy-Schwarz?.]
17. [Hint: Use Riemann sums and Cauchy-Schwarz..]
18. [Hint: You may use the following standard result from honors algebra 3: if $3^{k} \mid 2^{n}-1$ then $2 \cdot 3^{k-1}=$ $\varphi\left(3^{k}\right) \mid n$. Put in abstract algebra language: $\left(\mathbb{Z} / 3^{k} \mathbb{Z}\right)^{\times}$is a cyclic group of order $\varphi\left(3^{k}\right)$ and 2 is a generator. To show this last statement show by induction that $2^{3^{t}} \equiv-1+3^{r+1}\left(\bmod 3^{r+2}\right)$ and $\left.4^{3^{r}} \equiv 1+3^{r+1}\left(\bmod 3^{r+2}\right) ..\right]$

Harder

19. [Hint: Show that $x^{2} \geq x-1 / 4$ and then use AM-GM..]
20. [Hint: Enough to show that $a_{k}-n \in[-1,1]$, or equivalently that $\left.\left(a_{k}-n\right)^{2} \leq 1 ..\right]$
21. [Hint: Write $a_{k}=x_{k}-x_{k-1}$ and rewrite the inequality in terms of the $a_{k} .$.]
22. [Hint: Get rid of sec and use Cauchy-Schwarz.]
23. [Hint: Apply Cauchy-Schwarz to find n. Then play around..]
24. [Hint: $A=\frac{1}{2} b c \sin A$ and $a^{2}=b^{2}+c^{2}-2 b c \cos A$. .]
25. [Hint: Sub the equation in the inequalities.]
