
Math 43900 Problem Solving

Fall 2018

Lecture 4 Exercises

Andrei Jorza

These problems are taken from the textbook, from Ravi Vakil’s Putnam seminar notes, from David
Galvin’s problems and from Po-Shen Loh’s Putnam seminar notes.

Polynomials

Useful facts
1. If P (X) has root α then X − α | P (X), i.e., P (X) = (X − α)Q(X) for a polynomial Q(X). The root
α is a double root, i.e., it appears twice in the list of roots, if and only if P (α) = P ′(α) = 0.

2. If a polynomial with coefficients in C has infinitely many roots it must be the 0 polynomial. A variant
is that if P,Q are complex polynomials with P (z) = Q(z) for infinitely many values of z then P = Q.

3. If P (X) and Q(X) have the same (complex) roots then they differ by a scalar. In particular, if they
have the same leading coefficient then P = Q.

4. Remember from the quadratic formula that if X2 + aX + b = 0 has roots α and β then α + β = −a
and αβ = b. If P (X) = Xn + a1X

n−1 + a2X
n−2 + · · · + an−1X + an has roots α1, . . . , αn then for

1 ≤ r ≤ n
(−1)rar =

∑
i1<i2<...<ir

αi1αi2 · · ·αir (= sr)

which specializes to −a1 =
∑
i

αi(= s1), a2 =
∑

i<j αiαj(= s2), −a3 =
∑

i<j<k αiαjαk(= s3) and so

on until (−1)nan =
∏
αi(= sn). The sk are called the elementary symmetric polynomials in the

roots.

5. If A and B are two polynomials then you can divide with remainder: A(X) = B(X) · Q(X) + R(X)
with either R(X) = 0 or degR < degB. Using divisibilities you can show that the gcd of A and B is
the same as the gcd of B and R and then compute the gcd sequentially. We write (A,B) for the gcd.

6. This is Gauss’ lemma: If A and B are integer polynomials and A/B is a polynomial (necessarily with
rational coefficients) then it is an integer polynomial. In other words if B | A as rational polynomials
then B | A as integral polynomials.

7. If a matrix has entries which are polynomials then the determinant of the matrix is also a polynomial.
You can show this by induction using the fact that a determinant can be expanded in terms of rows
and minors.

8. This is the important Eisenstein irreducibility criterion, which we’ll prove when we do modular arith-
metic. Suppose P (X) = Xn + a1X

n−1 + · · ·+ an−1X + an is an integral polynomial and p is a prime
number such that p | a1, a2, . . . , an but p2 - an. Then P (X) is an irreducible polynomial.
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9. Finally an input from Galois theory that’s useful: If a rational (or real or complex) polynomial
P (x1, x2, . . . , xn) doesn’t depend on the ordering of the variables x1, . . . , xn, i.e., no matter how you
permute them the final expression is the same, then P (x1, . . . , xn) can be written as a polynomial ratio-
nal (or real or complex) polynomial Q(s1, . . . , sn) where sk are the elementary symmetric polynomials.
E.g., x21x2 + x1x

2
2 + x21x3 + x1x

2
3 + x22x3 + x2x

2
3 = s1s2 − 3s3 (check this!).
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Problems with roots
Easier

1. (Putnam 2005) Find a non-zero polynomial P (X,Y ) such that P (btc, b2tc) = 0 for all real numbers t.
(Here btc indicates the greatest integer less than or equal to t.)

2. (Putnam 1985) Let k be the smallest positive integer for which there exist distinct integersm1,m2,m3,m4,m5

such that the polynomial

p(x) = (x−m1)(x−m2)(x−m3)(x−m4)(x−m5)

has exactly k nonzero coefficients. Find, with proof, a set of integers m1,m2,m3,m4,m5 for which this
minimum k is achieved.

3. (Putnam 1992) Let p(x) be a nonzero polynomial of degree less than 1992 having no nonconstant factor
in common with x3 − x. Let

d1992

dx1992

(
p(x)

x3 − x

)
=
f(x)

g(x)

for polynomials f(x) and g(x). Find the smallest possible degree of f(x).

4. (Putnam 1979) Let F be a finite field with an odd number n of elements. Suppose x2 + bx + c is an
irreducible polynomial over F . For how many elements d ∈ F is x2 + bx+ c+ d irreducible?

Harder
5. (Putnam 1991) Find all real polynomials p(x) of degree n ≥ 2 for which there exist real numbers
r1 < r2 < · · · < rn such that

(a) p(ri) = 0, i = 1, 2, . . . , n, and

(b) p′
(

ri+ri+1

2

)
= 0 i = 1, 2, . . . , n− 1,

where p′(x) denotes the derivative of p(x).

6. If P (X) is a real polynomial whose roots are all real and distinct and different from 0 show that
XP ′(X) + P (X) is a real polynomial with distinct real roots which are different from 0. As a follow-
up: show that XP ′′(X) + 3XP ′(X) + P (X) has distinct real roots. [Hint for the follow-up: apply the
first part twice.]

Problems with divisibilities
Easier

7. Show that in the product (1−X +X2 −X3 + · · ·+X100)(1 +X +X2 +X3 + · · ·+X100) when you
expand and collect terms X only appears to even exponents.

8. Find all polynomials P (X) satisfying (X + 1)P (X) = (X − 2)P (X + 1).

Harder
9. Let a1 < a2 < . . . < an be integers. Show that (X−a1)(X−a2) · · · (X−an)−1 is irreducible in Z[X].

[Hint: If it factors as P (X)Q(X) what are the roots of P +Q?]

10. Suppose p is a prime ≡ 3 (mod 4). Show that (X2 + 1)n + p is irreducible over Z. [Hint: the condition
on p implies that X2 + 1 has no roots mod p.]

11. Let P (X) ∈ Z[X] be an irreducible polynomial such that |P (0)| is not a perfect square. Show that
P (X2) is also irreducible.
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Extra problems
Easier

12. Show that the polynomial Xn − 2 is irreducible in Z[X].

13. Suppose p is a prime. Show that P (X) = Xp−1 + Xp−2 + · · · + X + 1 =
Xp − 1

X − 1
is an irreducible

polynomial. [Hint: Look at P (X + 1) and apply the Eisenstein irreducibility criterion.]

14. Suppose P (X) is a monic polynomial with integer coefficients. Show that if P (X) has a rational root
α then α is in fact integral. [Roots of such polynomials are called algebraic integers.]

15. For which real values of p and q are the roots of the polynomial X3− pX2 + 11X − q three consecutive
integers?

Harder
16. (Useful) Show that if m | n then Xm−1 | Xn−1. Also show that if m | n are odd then Xm+1 | Xn+1.

As a follow-up: show that if m and n are positive integers with gcd d then the polynomials Xm − 1
and Xn − 1 have gcd Xd − 1. [Hint: Show that if m = nq + r is division with remainder then
Xm − 1 = (Xn − 1)Q(X) +Xr − 1 is division with remainder.]

17. (Putnam 1986) Let a1, a2, . . . , an be real numbers, and let b1, b2, . . . , bn be distinct positive integers.
Suppose that there is a polynomial f(x) satisfying the identity

(1− x)nf(x) = 1 +

n∑
i=1

aix
bi .

Find a simple expression (not involving any sums) for f(1) in terms of b1, b2, . . . , bn and n (but inde-
pendent of a1, a2, . . . , an).

18. Find all complex numbers a, b such that |z2 + az + b| = 1 for all complex numbers z with |z| = 1.

19. Let P (X) = Xn + a1X
n−1 + · · · + an−1X + an. If a1 + a3 + a5 + · · · and a2 + a4 + · · · are real

numbers show that P (1) and P (−1) are real numbers as well. As a follow-up: let α1, . . . , αn be the
roots of P (X) and suppose that Q(X) = Xn + b1X

n−1 + · · · bn−1X + bn has roots α2
1, . . . , α

2
n. Show

that b1 + b2 + · · ·+ bn is a real numbers.

20. For which values of n ≥ 1 do there exist polynomials P (X) of degree n satisfying:

(a) P (k) = k for 1 ≤ k ≤ n,

(b) P (0) is an integer, and

(c) P (−1) = 2017?

Due next week

Write
Please write out clearly and concisely two problems.

Read
In preparation for next class, please look over section on the pigeonhole principle (§1.3) in the textbook.

Attempt
Please look over the problems from the following lecture. This way you can ask me questions and we can

discuss solutions in class.
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