Multiple Choice

1.(6 pts) Let f(x,y) be a function where (1,3) and (-1,0) are critical points. We also know that $f_{xx}(1,3) = 1$, $f_{x,y}(1,3) = 2$, $f_{yy}(1,3) = 1$ and $f_{xx}(-1,0) = 2$, $f_{x,y}(-1,0) = -1$, $f_{yy}(-1,0) = 3$. Using the second derivative test classify the points (1,3) and (-1,0).

- (a) both are local minimums
- (b) (1,3) is a saddle point; (-1,0) is a local minimum
- (c) (1,3) is a saddle point; (-1,0) is a local maximum
- (d) both are saddle points
- (e) (1,3) is a local maximum; (-1,0) is a local minimum

2.(6 pts) Use implicit differentiation to find $\partial z/\partial x$ when $xz + z^2 = y$.

(a)
$$\partial z/\partial x = \frac{-z}{x+2z}$$

(b)
$$\partial z/\partial x = \frac{y}{x+z}$$

(c)
$$\partial z/\partial x = \frac{-x}{2z}$$

(d)
$$\partial z/\partial x = \frac{y-z}{x+2z}$$

(e)
$$\partial z/\partial x = \frac{y-x}{2z}$$

3.(6 pts) Find the directional derivative of $f(x,y) = xe^{-2y}$ at the point (1,0) in the direction (1,3).

(a)
$$\frac{-5}{\sqrt{10}}$$

(c)
$$-4$$

$$(d) \quad \frac{-1}{2}$$

(e)
$$\sqrt{10}$$

4.(6 pts) Let f be the function $f(x, y, z) = \sin(xyz)$. From the point (1, 1, 0) in which direction should one move in order to attain the maximum rate of change.

(a)
$$\langle 0, 0, 0 \rangle$$
 (b) $\frac{1}{\sqrt{2}} \langle 0, 0, 1 \rangle$ (c) $\frac{1}{\sqrt{2}} \langle 1, 1, 0 \rangle$ (d) $\langle 1, 1, 1 \rangle$ (e) $\langle 0, 0, 1 \rangle$

5.(6 pts) Let f(x,y) be a function of x(s,t) = st and y(s,t) = 2s + t. If you know that $f_x(1,3) = 2$ and $f_y(1,3) = -3$ then what is $\partial f/\partial s$ at when s = 1 and t = 1?

- (a) -1 (b) not enough information to determine the value
- (c) 3 (d) -4
- $(e) \quad 0$

6.(6 pts) Find a point on the surface $z = x^2 - y^3$ where the tangent plane is parallel to the plane x + 3y + z = 0.

- (a) no such point exists (b) (-1/2, 1, -3/4) (c) (1, 1, 0)
- (d) (-1/2, 1, 1) (e) (-1/2, 1, -5/2)

7.(6 pts) Consider the two surfaces S_1 : y + z = 4 and S_2 : $z = 2x^2 + 3y^2 - 12$. Find the tangent line to the intersection curve of S_1 and S_2 at the point (1, 2, 2).

- (a) $\langle x, y, z \rangle = \langle -11t, 4t, -4t \rangle + \langle 1, 2, 2 \rangle$
- (b) $\langle x, y, z \rangle = \langle -13t, 4t, -4t \rangle + \langle 1, 2, 2 \rangle$
- (c) $\langle x, y, z \rangle = \langle -11t, 4t, -4t \rangle + \langle -1, -2, -2 \rangle$
- (d) $\langle x, y, z \rangle = \langle 11t, -4t, 4t \rangle + \langle 1, 2, 2 \rangle$
- (e) $\langle x, y, z \rangle = \langle -13t, 4t, -4t \rangle + \langle -1, -2, -2 \rangle$

8.(6 pts) Find the absolute maximum of the function $f(x, y, z) = xy + \frac{z^2}{2}$ under the two constraints y - 2z = 0 and x + z = -1.

- (a) $\frac{22}{9}$ (b) $\frac{-2}{9}$ (c) $\frac{2}{3}$ (d) $\frac{2}{9}$ (e) $\frac{-1}{2}$

9.(6 pts) Which of the following integrals represents the volume of the solid delimited by y = 0, y = 1, x = 0, x = 2, $z = x^2y + y^3$ and z = 0.

 $\int_{0}^{2} \int_{0}^{1} x^{2}y + y^{3} \, dy dx$

(b) $\int_0^2 \int_0^1 -x^2 y - y^3 \, dx \, dy$

- (c) $\int_0^2 \int_0^1 -x^2 y y^3 \, dy \, dx$
- (d) $\int_0^2 \int_0^1 x^2 y + y^3 dx dy$

(e) $\int_{1}^{2} \int_{0}^{1} x^{2}y + y^{3} dy dx$

10.(6 pts) Compute $\iint_R 24xy \, dA$ where R is the region bounded by x = 1, x = 2, y = x, and $y = x^2$.

- (a) 62
- (b) 128
- (c) 64
- (d) 48
- (e) 81

Partial Credit

You must show your work on the partial credit problems to receive credit!

11.(12 pts.) Find the absolute maximum and absolute minimum of the function f(x,y) =x - 3y subject to the constraint $x^2 + 2y^2 = 3$.

12.(12 pts.)

Consider the iterated integral $\int_0^2 \int_{y^2}^4 y^3 e^{x^3} dx dy$.

- (a) Sketch the region of integration.
- (b) Rewrite the integral with the order of integration reversed.
- (c) Compute the value of the iterated integral.

13.(12 pts.) Determine the absolute maximum and minimum of the function $f(x,y) = x^2y - xy + x$ on the region $0 \le x \le 2, -2 \le y \le 0$.

Name:		
Instructor:	ANSWERS	

Math 20550, Exam 2 September 30, 2014

- The Honor Code is in effect for this examination. All work is to be your own.
- No calculators.
- The exam lasts for 1 hour and 15 minutes..
- Be sure that your name is on every page in case pages become detached.
- Be sure that you have all 5 pages of the test.
- Each multiple choice question is 6 points, each partial credit problem is 12 points. You will receive 4 extra points.

PLE	ASE MARI	X YOUR AN	SWERS WIT	H AN X, not a	a circle!
1.	(a)	(ullet)	(c)	(d)	(e)
2.	(ullet)	(b)	(c)	(d)	(e)
3.	(ullet)	(b)	(c)	(d)	(e)
4.	(a)	(b)	(c)	(d)	(●)
5.	(a)	(b)	(c)	(ullet)	(e)
6.	(a)	(ullet)	(c)	(d)	(e)
7.	(a)	(ullet)	(c)	(d)	(e)
8.	(a)	(b)	(ullet)	(d)	(e)
9.	(ullet)	(b)	(c)	(d)	(e)
10.	(a)	(b)	(c)	(d)	(ullet)

Please do NOT	write in this b	ox.
Multiple Choice		
11.		
12.		
13.		
Extra Points.	4	
Total:		

11.Lagrange system:

$$1 = \lambda 2x$$
$$-3 = \lambda 4y$$
$$x^2 + 2y^2 = 3$$

From the first equation we see that $x \neq 0$, and dividing by 2x we get $\lambda = \frac{1}{2x}$.

Substituting λ by $\frac{1}{2x}$ in the second equation we get $-3 = \frac{2y}{x}$, hence $y = -\frac{3}{2}x$ Using the constraint we obtain

$$x^2 + 2\frac{9}{4}x^2 = 3$$
 hence $x^2 = \frac{6}{11}$.

We have two solutions:

$$x = \frac{\sqrt{6}}{\sqrt{11}}, \quad y = -\frac{3\sqrt{6}}{2\sqrt{11}}$$

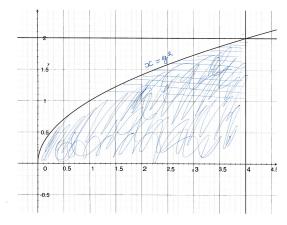
and

$$x = -\frac{\sqrt{6}}{\sqrt{11}}, \quad y = \frac{3\sqrt{6}}{2\sqrt{11}}$$

In the first case the value of f is $\frac{\sqrt{66}}{2}$, and in the second case the value of f is $-\frac{\sqrt{66}}{2}$.

Answer: the maximum value is $\frac{\sqrt{66}}{2}$ and the minimum value is $-\frac{\sqrt{66}}{2}$.

12. For part (a) the region is the following:



For part (b):

$$\int_0^4 \int_0^{\sqrt{x}} y^3 e^{x^3} \, dy dx$$

For part (c):

$$\int_0^4 \int_0^{\sqrt{x}} y^3 e^{x^3} \, dy dx = \int_0^4 \frac{y^4}{4} e^{x^3} |_0^{\sqrt{x}} \, dx = \frac{1}{4} \int_0^4 x^2 e^{x^3} \, dx$$
$$= \frac{1}{12} e^{x^3} |_0^4 = \frac{1}{12} (e^6 4 - 1)$$

13.First we find the critical points in the region.

$$f_x: \quad 2xy - y = 0$$
$$f_y: \quad x^2 - x = 0$$

The first equation has two solutions y=0 and $x=\frac{1}{2}$, and the second has solutions x=0 and x=1.

We get the critical points (0,0) and (1,0). Both of these points are in the region.

The boundary consists of 4 sides:

- (1) $x = 0, -2 \le y \le 0$
- (2) $x = 2, -2 \le y \le 0$
- (3) $y = -2, 0 \le x \le 2$.
- (4) y = 0, 0 < x < 2.

We analyze each side separately.

Side 1:

f(0,y)=0, so the value of f is constant at 0 on this side.

Side 2:

f(2,y) = 4y - 2y + 2 = 2y + 2 This function has no critical points since f'(y) = 2 and so we only need to check the endpoints (2,-2) and (2,0).

Side 3:

 $f(x,-2) = -2x^2 + 2x + x = -2x^2 + 3x$. Since f'(x) = -4x + 3 it has a critical point at $x = \frac{3}{4}$ which is in the interval [0,2]. On this side we will need to check the points $(\frac{3}{4},-2),(0,-2),$ and (2,-2).

Side 4:

f(x,0) = x. We have f'(x) = 1 and there are no critical points. We need only check (0,0) and (2,0).

Now we check all the points we have found.

$$f(0,0) = 0$$

$$f(1,0) = 1$$

$$f(2,-2) = -8 + 4 + 2 = -2$$

$$f(2,0) = 2$$

$$f(\frac{3}{4},-2) = \frac{-18}{16} + \frac{6}{4} + \frac{3}{4} = \frac{18}{16} = \frac{9}{8}$$

$$f(0,-2) = 0$$

Answer: The maximum value is 2 and the minimum value is -2.