Multiple Choice

1.(6 pts) Evaluate the integral [ D e~*~v*d A by changing to the polar coordinates, where
D = {(z,y)lz* +y* < 1}.

(a) w(1—et) b)) wet=1)(c) w(l—e) (d) w(e—1) (e) me

2.(6 pts) Consider the loop (one leaf) of the 4-leaf rose r = cos26 which is entirely
contained in the first and fourth quadrant.

If this region has density p(z,y) = 2% + y? then which of the following integrals is the
moment about the y-axis.

(a) My:ij/rj4 Ocoszaxr?’ dr df (b) My:fl/iz OCOS297"4COSerd9
(c) My:f:/:/z OCOS29T4COSerd0 (d) My:f:/:/z 0C05297“30089drd0

(€) M, = [ [ 3cos6drdf

—7/2 J0

3.(6 pts) Evaluate [ [ [, zydV, where
E={(r,y,2)|0<2 <2, 0<y<V4—2a? 0<z<zx}.

16

(@) 4 b) 2 © 1 @ 1

1
2

(e)

4.(6 pts) A solid E lies within the cylinder 2% + y* = 1, below the plane z = 4 and above
2z =1— 2% — y?. The density at any point is equal to its distance from the z axis. Find
an integral that computes the mass of F.



(a) o27r fol f14_r2 r2dz drdf (b) fo 02 4 dr df
() 027r fol f14—r2 rdzdrdf (d) 027r fol f41_r2 r?dz dr df

(e) 027r fol fll_rg r? dz dr do

5.(6 pts) Let E be the region between the spheres 2%+ y*+ 22 = z and 22 +y? + 22 = 22.
Which of the following represents [ [ [,(2* + y?) dV in spherical coordinates?

C

(@) 5T ST [7 ot sin(o) dp de do (b) [ [ [ g sin® (0) dp s dB
(&) ST ST R prsind (@) dpdgds () [T [T, 20N ptsin®(6) dp do df

(e) fo% 07T/2 fczozz)sg ) p*sin(¢) dp do df

6.(6 pts) Find [, 2x13ds, where C' is the upper half of the circle 22 + y? = 4.

(a) 27 (b) 4 (¢) 0 (d) 8 (e) 4

7.(6 pts) The following figure shows a vector field F on R? and a curve C from (1,1) to
(—1,—

1).
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Which of the following statements must be true about the line integral of F over C'?

(a) It must be negative. (b) It must be positive.
(¢) It must be zero. (d) It must be 1.

(e) It is impossible to tell from the image.

8.(6 pts) Calculate [, ydz + 4zdy where C' is the curve r(t) = (t*,¢), 0 <t < 1.

@ -2 ) 4 © 3 @ 4 @

9.(6 pts) Which one of the following vector fields is conservative?

a) F = (322 +ye™)i+ (9y® + xe™)j

b)  None of these vector fields are conservative.

(

(

(c) F = (sin(y) + 2z)i+ sin(y)j

(d) F =322+ ze™)i+ (9y® + ye™)j
(

e) F=uzxi+zaj

10.(6 pts) Using the Fundamental Theorem of Line Integrals, evaluate

/C(ezy + $2)dﬂc + (e’“" + Cos(y))dy

where C' is any smooth curve from (1,0) to (0, ).

() 0 (d) = (e) —m

@ 0) -3

Partial Credit
You must show your work on the partial credit problems to receive credit!



11.(12 pts.) Find Zz, the z coordinate of the center of mass, for the solid S bounded by
paraboloid z = 2% + y? and the plane z = 1 if S has constant density 1 and the total
v

mass —.
2

12.(12 pts.) Use the transformation x = u? and y = v? to find the area of the region
bounded by the curves y/x + /y = 1, z-axis and y-axis.

13.(12 pts.) Let C be the helix given by the equation r(t) = (cost,sint,8¢), 0 <t <
Find [, F-dr for F = (2% —zy,0).

™
1 .
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11.Let S be the solid in the problem. We use cylindrical coordinates to represent S.
Thus we set

r = rcosfb,
= rsiné,
z zZ.

Then the solid

The z coordinate of the center of the mass is computed by
[ [ JszpdV
m )

Z =

where m = g and p = 1. So we only need to compute the integral.
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12.Let D be the region in the problem.



Under the transformation, we get the transform of D as

Hence the area is

S={u+v<1,u>0v>0}.

//DdA




13.

/F-dr = /xzdx—a:ydy
c c

™

= /4 cos? t(—sint)dt — costsint cos tdt
0
T

= —2/4 cos? t sin tdt
0

Use the substitution
u=cost, du= —sint.

T
—2/4 cos’tsintdt =
0

w

Wb Wl
<
=%

e
| \)
—_
~

—~

Hence

2 V2
/CF-dr:§(T—1).



