Name:	
Instructor:	

Math 20550. Exam 3, Practice Exam November 7, 2015

- The Honor Code is in effect for this examination. All work is to be your own.
- No calculators.
- The exam lasts for 1 hour and 15 minutes..
- Be sure that your name is on every page in case pages become detached.
- Be sure that you have all 9 pages of the test.
- Each multiple choice question is 6 points, each partial credit problem is 12 points. You will receive 4 extra points.

PLE	ASE N	MARK YOUR ANS	WERS WIT	H AN X, not a	circle!
1.	(a)	(b)	(c)	(d)	(e)
2.	(a)	(b)	(c)	(d)	(e)
3.	(a)	(b)	(c)	(d)	(e)
4.	(a)	(b)	(c)	(d)	(e)
5.	(a)	(b)	(c)	(d)	(e)
6.	(a)	(b)	(c)	(d)	(e)
7.	(a)	(b)	(c)	(d)	(e)
8.	(a)	(b)	(c)	(d)	(e)
9.	(a)	(b)	(c)	(d)	(e)
10.	(a)	(b)	(c)	(d)	(e)

Please do NOT	write in this be	ox.
Multiple Choice		
11.		
12.		
13.		
Extra Points.	4	
Total:		

Name: _____ Instructor:

Multiple Choice

1.(6 pts) Evaluate the integral $\iint_D e^{-x^2-y^2} dA$ by changing to the polar coordinates, where $D = \{(x,y)|x^2+y^2 \leq 1\}.$

(a) $\pi(1-e^{-1})$ (b) $\pi(e^{-1}-1)$ (c) $\pi(1-e)$ (d) $\pi(e-1)$ (e) $\pi(e-1)$

2.(6 pts) Consider the loop (one leaf) of the 4-leaf rose $r = \cos 2\theta$ which is entirely contained in the first and fourth quadrant.

If this region has density $\rho(x,y)=x^2+y^2$ then which of the following integrals is the moment about the y-axis.

(a)
$$M_y = \int_{-\pi/4}^{\pi/4} \int_0^{\cos 2\theta} x r^3 dr d\theta$$
 (b) $M_y = \int_{-\pi/2}^{\pi/2} \int_0^{\cos 2\theta} r^4 d\theta$

(a)
$$M_y = \int_{-\pi/4}^{\pi/4} \int_0^{\cos 2\theta} x r^3 dr d\theta$$
 (b) $M_y = \int_{-\pi/2}^{\pi/2} \int_0^{\cos 2\theta} r^4 \cos \theta dr d\theta$ (c) $M_y = \int_{-\pi/4}^{\pi/4} \int_0^{\cos 2\theta} r^4 \cos \theta dr d\theta$ (d) $M_y = \int_{-\pi/4}^{\pi/4} \int_0^{\cos 2\theta} r^3 \cos \theta dr d\theta$

(e)
$$M_y = \int_{-\pi/2}^{\pi/2} \int_0^{\cos 2\theta} r^3 \cos \theta \, dr \, d\theta$$

Name: Instructor:

3.(6 pts) Evaluate $\iint \int_E zy dV$, where

 $E = \{(x, y, z) \mid 0 \le x \le 2, \quad 0 \le y \le \sqrt{4 - x^2}, \quad 0 \le z \le x\}.$

- (a) 4
- (b) 2
- (c) 1 (d) $\frac{16}{15}$

4.(6 pts) A solid E lies within the cylinder $x^2 + y^2 = 1$, below the plane z = 4 and above $z = 1 - x^2 - y^2$. The density at any point is equal to its distance from the z axis. Find an integral that computes the mass of E.

(a)
$$\int_0^{2\pi} \int_0^1 \int_{1-r^2}^4 r^2 dz dr d\theta$$

(b)
$$\int_0^{2\pi} \int_0^1 \int_4^{1-r^2} r^2 dz dr d\theta$$

(c)
$$\int_0^{2\pi} \int_0^1 \int_{1-r^2}^4 r \, dz \, dr \, d\theta$$

(d)
$$\int_0^{2\pi} \int_0^1 \int_{4-r^2}^1 r^2 dz dr d\theta$$

(e)
$$\int_0^{2\pi} \int_0^1 \int_{1-r^2}^1 r^2 dz dr d\theta$$

Name: Instructor:

5.(6 pts) Let E be the region between the spheres $x^2 + y^2 + z^2 = z$ and $x^2 + y^2 + z^2 = 2z$. Which of the following represents $\int \int \int_E (x^2 + y^2) \ dV$ in spherical coordinates?

- (a)
- $\int_0^{2\pi} \int_0^{\pi/2} \int_1^2 \rho^4 \sin(\phi) \, d\rho \, d\phi \, d\theta \qquad \qquad \text{(b)} \qquad \int_0^{2\pi} \int_0^{\pi/2} \int_{\cos(\theta)}^{2\cos(\theta)} \rho^4 \sin^3(\theta) \, d\rho \, d\phi \, d\theta$
- $\int_0^{2\pi} \int_0^{\pi/2} \int_{\cos(\phi)}^{2\cos(\phi)} \rho^4 \sin^3(\phi) \, d\rho \, d\phi \, d\theta \qquad \text{(d)} \qquad \int_0^{2\pi} \int_{-\pi/2}^{\pi/2} \int_{\cos(\phi)}^{2\cos(\phi)} \rho^4 \sin^3(\phi) \, d\rho \, d\phi \, d\theta$
- (e) $\int_0^{2\pi} \int_0^{\pi/2} \int_{\cos(\phi)}^{2\cos(\phi)} \rho^2 \sin(\phi) \, d\rho \, d\phi \, d\theta$

6.(6 pts) Find $\int_C 2xy^3 ds$, where C is the upper half of the circle $x^2 + y^2 = 4$.

- (a) 2π
- (b) 4
- (c) 0
- (d) 8
- (e) 4π

7.(6 pts) The following figure shows a vector field **F** on \mathbb{R}^2 and a curve C from (1,1) to (-1, -1).

Which of the following statements **must be true** about the line integral of \mathbf{F} over C?

(a) It must be negative. (b) It must be positive.

(c) It must be zero.

- (d) It must be 1.
- (e) It is impossible to tell from the image.

8.(6 pts) Calculate $\int_C y dx + 4x dy$ where C is the curve $\mathbf{r}(t) = \langle t^2, t \rangle$, $0 \le t \le 1$.

- (a)
- (b) 4 (c) $\frac{4}{3}$ (d)

Name: Instructor:

9.(6 pts) Which one of the following vector fields is conservative?

- $\mathbf{F} = (3x^2 + ye^{xy})\mathbf{i} + (9y^8 + xe^{xy})\mathbf{j}$ (a)
- None of these vector fields are conservative. (b)
- (c) $\mathbf{F} = (\sin(y) + 2x)\mathbf{i} + \sin(y)\mathbf{j}$
- $\mathbf{F} = (3x^2 + xe^{xy})\mathbf{i} + (9y^8 + ye^{xy})\mathbf{j}$ (d)
- (e) $\mathbf{F} = x\mathbf{i} + x\mathbf{j}$

10.(6 pts) Using the Fundamental Theorem of Line Integrals, evaluate

$$\int_C (e^x y + x^2) dx + (e^x + \cos(y)) dy$$

where C is any smooth curve from (1,0) to $(0,\pi)$.

- (a) $\frac{2}{3}$ (b) $\pi \frac{1}{3}$ (c) 0 (d) π (e)

Name:	
Instructor:	

Partial Credit

You must show your work on the partial credit problems to receive credit!

11.(12 pts.) Find \bar{z} , the z coordinate of the center of mass, for the solid S bounded by paraboloid $z=x^2+y^2$ and the plane z=1 if S has constant density 1 and the total mass $\frac{\pi}{2}$.

Name:	
Instructor:	

12.(12 pts.) Use the transformation $x=u^2$ and $y=v^2$ to find the area of the region bounded by the curves $\sqrt{x}+\sqrt{y}=1$, x-axis and y-axis.

Name:	
Instructor:	

13.(12 pts.) Let C be the helix given by the equation $\mathbf{r}(t) = \langle \cos t, \sin t, 8t \rangle$, $0 \le t \le \frac{\pi}{4}$. Find $\int_C \mathbf{F} \cdot d\mathbf{r}$ for $\mathbf{F} = \langle x^2, -xy, 0 \rangle$.