Name:	
Instructor:	

Math 20550. Exam 3 November 19, 2015

- The Honor Code is in effect for this examination. All work is to be your own.
- No calculators.
- The exam lasts for 1 hour and 15 minutes...
- Be sure that your name is on every page in case pages become detached.
- Be sure that you have all 9 pages of the test.
- Each multiple choice question is 6 points, each partial credit problem is 12 points. You will receive 4 extra points.

PLE	ASE MARK	YOUR A	NSWERS WITH	AN X, not	a circle!
1.	(a)	(b)	(c)	(d)	(e)
2.	(a)	(b)	(c)	(d)	(e)
3.	(a)	(b)	(c)	(d)	(e)
4.	(a)	(b)	(c)	(d)	(e)
5.	(a)	(b)	(c)	(d)	(e)
6.	(a)	(b)	(c)	(d)	(e)
7.	(a)	(b)	(c)	(d)	(e)
8.	(a)	(b)	(c)	(d)	(e)
9.	(a)	(b)	(c)	(d)	(e)
10.	(a)	(b)	(c)	(d)	(e)

Please do NOT	write in this b	ox.
Multiple Choice		
11.		
12.		
13.		
Extra Points.	4	
Total:		

Instructor:

Multiple Choice

1.(6 pts) Compute the Jacobian $\left(\frac{\partial(x,y)}{\partial(u,v)}\right)$ of the transformation T given by $x=e^{u-v}$, $y = e^{u+v}.$

- (a) 2
- (b)
- $2e^{2v}$ (c) $e^{u^2-v^2}$ (d) $2e^{uv}$ (e) $2e^{2u}$

2.(6 pts) Calculate the line integral $\int_C (y^2 + x) dx + 4xy dy$ where C is the arc of $x = y^2$ from (1,1) to (4,2).

- (a) 30
- (b)
- 35 (c) 0
- (d) 20
- (e) 25

Name: _____ Instructor:

3.(6 pts) Calculate the line integral $\int_C (2x + y) ds$ where C is the quarter of the circle $x^2 + y^2 = 4$ in the first quadrant.

- (a) 0
- (b) 12
- (c) 8
- (d) 4

4.(6 pts) Let S is the sector with sector angle $\frac{\pi}{3}$ of a disk of radius 2 centered at origin as shown in the picture below.

The integral $\iint_S \frac{x^2 + y^2}{x^2} dA$ is equal to

- (a) $\int_0^{\frac{\pi}{3}} \int_0^1 \frac{1}{\cos^2 \theta} dr d\theta$ (b) $\int_0^{\frac{\pi}{3}} \int_0^2 \frac{r}{\cos^2 \theta} dr d\theta$ (c) $\int_0^{\frac{\pi}{3}} \int_0^2 \frac{1}{\cos^2 \theta} dr d\theta$
- (d) $\int_0^{\frac{\pi}{3}} \int_0^1 \frac{\theta}{\cos^2 \theta} dr d\theta$ (e) $\int_0^{\frac{\pi}{3}} \int_0^2 \frac{r^3}{\cos^2 \theta} dr d\theta$

Name: _____ Instructor:

5.(6 pts) Evaluate the triple integral $\iiint_E x \, dV$, where E lies under the plane z = 1 and above the region in the xy-plane bounded by x = 0, y = 0, and 2x + y = 2.

- (a) $\frac{1}{6}$

- (b) $\frac{1}{2}$ (c) $\frac{1}{4}$ (d) $\frac{1}{3}$ (e) 1

6.(6 pts) Find the x-coordinate center of mass of the cube

$$C = \{(x,y,z): 0 \le x \le 1, 0 \le y \le 1, 0 \le z \le 1\}$$

whose density is $\rho(x, y, z) = 2x + 3y^2$. The total mass of the cube equals 2.

- (a) $\bar{x} = \frac{7}{12}$ (b) $\bar{x} = \frac{5}{6}$ (c) $\bar{x} = 1$ (d) $\bar{x} = \frac{5}{12}$ (e) $\bar{x} = \frac{1}{2}$

Instructor:

7.(6 pts) Let $\mathbf{F}(x,y) = \langle y, 4x \rangle$. Calculate $\int_C \mathbf{F} \cdot d\mathbf{r}$ where C is the curve $\mathbf{r}(t) = \langle t^2, t \rangle$, $0 \le t \le 1$.

- (a) -4

- (b) 2 (c) 4 (d) -2 (e) $\frac{4}{3}$

8.(6 pts) Evaluate $\int_C \mathbf{F} \cdot d\mathbf{r}$, where $\mathbf{F} = (y^2 \cos(xy^2) + 3x^2)\mathbf{i} + (2xy\cos(xy^2) + 2y)\mathbf{j}$ is a conservative vector field, and C is any curve from the point (-1,0) to (1,0).

- (a) 0
- (b) -1 (c) 2 (d) π
- (e) 1

Name: Instructor:

9.(6 pts) Let E be the solid region in the first octant that lies under the paraboloid $z = 4 - x^2 - y^2$. Which of the following evaluates $\iiint_E x \, dV$ in cylindrical coordinates? (The first octant contains the points (x, y, z) such that $x \ge 0$, $y \ge 0$ and $z \ge 0$.)

(a)
$$\int_0^{\frac{\pi}{2}} \int_0^4 \int_0^{4-r^2} r \cos \theta \, dz \, dr \, d\theta$$

(a)
$$\int_0^{\frac{\pi}{2}} \int_0^4 \int_0^{4-r^2} r \cos \theta \, dz \, dr \, d\theta$$
 (b) $\int_0^{\frac{\pi}{2}} \int_0^2 \int_0^{4-r^2} r^2 \cos \theta \, dz \, dr \, d\theta$

(c)
$$\int_0^{\frac{\pi}{2}} \int_0^4 \int_0^{4-r^2} r^3 \sin\theta \, dz \, dr \, d\theta$$
 (d)
$$\int_0^{\frac{\pi}{2}} \int_0^2 \int_0^{4-r^2} r \cos\theta \, dz \, dr \, d\theta$$

(d)
$$\int_0^{\frac{\pi}{2}} \int_0^2 \int_0^{4-r^2} r \cos \theta \, dz \, dr \, d\theta$$

(e)
$$\int_0^{\frac{\pi}{2}} \int_0^4 \int_0^{4-r^2} r^2 \cos \theta \, dz \, dr \, d\theta$$

10.(6 pts) Let E be the solid region that lies above the cone $z = \sqrt{x^2 + y^2}$ and below the plane z=2.

Which of the following evaluates $\iiint_E z \, dV$ in spherical coordinates?

(a)
$$\int_0^{2\pi} \int_0^{\frac{\pi}{4}} \int_0^{\frac{2}{\cos\phi}} \rho^3 \sin\phi \cos\phi \, d\rho \, d\phi \, d\theta$$
 (b)
$$\int_0^{2\pi} \int_{\frac{\pi}{4}}^{\frac{\pi}{2}} \int_0^{\frac{2}{\cos\phi}} \rho \cos\phi \, d\rho \, d\phi \, d\theta$$

(c)
$$\int_0^{2\pi} \int_0^{\frac{\pi}{4}} \int_0^{\frac{2}{\cos\phi}} \rho^3 \cos^2\phi \, d\rho \, d\phi \, d\theta$$
 (d) $\int_0^{2\pi} \int_0^{\frac{\pi}{4}} \int_0^{\frac{2}{\cos\phi}} \rho \cos\phi \, d\rho \, d\phi \, d\theta$

(e)
$$\int_0^{2\pi} \int_{\frac{\pi}{4}}^{\frac{\pi}{2}} \int_0^{\frac{2}{\cos\phi}} \rho^3 \sin\phi \cos\phi \, d\rho \, d\phi \, d\theta$$

Name:	
Instructor:	

Partial Credit

You must show your work on the partial credit problems to receive credit!

11.(12 pts.) Let $\mathbf{F} = (y^2 \cos(xy) + e^x)\mathbf{i} + (\sin(xy) + xy\cos(xy) + \frac{1}{y})\mathbf{j}$. Find a function f(x,y) such that $\nabla f = \mathbf{F}$.

Name:	
Instructor:	

12.(12 pts.) Find the mass of the solid between spheres $x^2+y^2+z^2=1$ and $x^2+y^2+z^2=4$ whose density is $\rho(x,y,z)=x^2+y^2+z^2$.

Name:	
Instructor:	

13.(12 pts.) Compute $\iint_R \frac{1}{2} dA$ where R is the region bounded by $2x^2 + 2xy + y^2 = 8$ using the change of variables given by x = u + v and y = -2v.

Name:		
Instructor:	ANSWERS	

Math 20550. Exam 3 November 19, 2015

- The Honor Code is in effect for this examination. All work is to be your own.
- No calculators.
- The exam lasts for 1 hour and 15 minutes...
- Be sure that your name is on every page in case pages become detached.
- Be sure that you have all 9 pages of the test.
- Each multiple choice question is 6 points, each partial credit problem is 12 points. You will receive 4 extra points.

PLEASE MARK YOUR ANSWERS WITH AN X, not a circle!					
1.	(a)	(b)	(c)	(d)	(•)
2.	(●)	(b)	(c)	(d)	(e)
3.	(a)	(•)	(c)	(d)	(e)
4.	(a)	(•)	(c)	(d)	(e)
5.	(a)	(b)	(c)	(•)	(e)
6.	(•)	(b)	(c)	(d)	(e)
7.	(a)	(●)	(c)	(d)	(e)
8.	(a)	(b)	(•)	(d)	(e)
9.	(a)	(ullet)	(c)	(d)	(e)
10.	(●)	(b)	(c)	(d)	(e)

Please do NOT	write in this b	ox.
Multiple Choice		
11.		
12.		
13.		
Extra Points.	4	
Total:		