Math 80220 Algebrai Number Theory Problem Set 1

Andrei Jorza

Due Friday, Feb 2

Throughout this problem set you will use traces and norms. Recall from that that $\operatorname{Tr}_{L / K}(x)=\sum \sigma(x)$ and $N_{L / K}(x)=\prod \sigma(x)$ where $\sigma: L \rightarrow \bar{K}$ are the embeddings of L fixing K. When $L=K(\alpha)$ one may enumerate these embeddings by the roots β of the minimal polynomial of α over K, sending α to β and fixing K.

Do 2 of the following problems.

1. Let m, n be coprime square-free integers which are not 1 . Let $K=\mathbb{Q}(\sqrt{m}, \sqrt{n})$.
(a) Suppose $m \equiv 2, n \equiv 3(\bmod 4)$. Use traces to show that elements of \mathcal{O}_{K} are of the form

$$
\frac{a+b \sqrt{m}+c \sqrt{n}+d \sqrt{m n}}{2}
$$

where $a, b, c, d \in \mathbb{Z}$. Use norms to $\mathbb{Q}(\sqrt{n})$ to show that a, c are even while b and d have the same parity and conclude that

$$
\mathcal{O}_{K}=\mathbb{Z}\left[\sqrt{m}, \sqrt{n}, \frac{\sqrt{m}+\sqrt{m n}}{2}\right]
$$

(b) Suppose $m, n \equiv 1(\bmod 4)$. Again use traces to show that elements of \mathcal{O}_{K} are of the form

$$
\alpha=\frac{a+b \sqrt{m}+c \sqrt{n}+d \sqrt{m n}}{4}
$$

where $a, b, c, d \in \mathbb{Z}$ are all of the same parity. Show that

$$
\beta=\frac{1+\sqrt{m}+\sqrt{n}+\sqrt{m n}}{4} \in \mathcal{O}_{K}
$$

and that one may write

$$
\frac{r+s \sqrt{m}+t \sqrt{n}}{2}=\alpha-d \beta
$$

with $r, s, t \in \mathbb{Z}$ such that $r+s+t$ even (recall that $(1+\sqrt{m}) / 2$ and $(1+\sqrt{n}) / 2$ are algebraic integers). Conclude that

$$
\mathcal{O}_{K}=\mathbb{Z}\left[\frac{1+\sqrt{m}}{2}, \frac{1+\sqrt{n}}{2}, \frac{1+\sqrt{m}+\sqrt{n}+\sqrt{m n}}{4}\right]
$$

2. Let $m \equiv 1(\bmod 9)$ be a square-free integer $\neq 1$ and let $K=\mathbb{Q}(\sqrt[3]{m})$.
(a) Show that $\operatorname{Tr}_{K / \mathbb{Q}}\left(a+b \sqrt[3]{m}+c \sqrt[3]{m^{2}}\right)=3 a$ and $N_{K / \mathbb{Q}}\left(a+b \sqrt[3]{m}+c \sqrt[3]{m^{2}}\right)=a^{3}+b^{3} m+c^{3} m^{2}-3 a b c m$.
(b) Show that

$$
\delta=\frac{1+\sqrt[3]{m}+\sqrt[3]{m^{2}}}{3} \in \mathcal{O}_{K}
$$

(c) Use traces to show that elements of \mathcal{O}_{K} are of the form

$$
\alpha=\frac{a m+b \sqrt[3]{m}+c \sqrt[3]{m}}{3 m}
$$

with $a, b, c \in \mathbb{Z}$. Use norms to show that $m \mid b, c$ and so we may in fact write

$$
\alpha=\frac{r+s \sqrt[3]{m}+t \sqrt[3]{m^{2}}}{3}
$$

for integers r, s, t.
(d) Use the fact that $\alpha-t \delta \in \mathcal{O}_{K}$ to conclude that

$$
\mathcal{O}_{K}=\mathbb{Z}\left[\sqrt[3]{m}, \frac{1+\sqrt[3]{m}+\sqrt[3]{m^{2}}}{3}\right]
$$

3. Let $M / L / K$ be finite extensions. Let $\alpha_{1}, \ldots, \alpha_{n}$ be a K-basis of L and $\beta_{1}, \ldots, \beta_{m}$ be an L-basis of M. Recall from algebra that $\left\{\alpha_{i} \beta_{j}\right\}$ is a K-basis of M. Show that

$$
\operatorname{disc}_{M / K}\left(\left(\alpha_{i} \beta_{j}\right)_{1 \leq i \leq n, 1 \leq j \leq m}\right)=\operatorname{disc}_{L / K}\left(\left(\alpha_{i}\right)\right)^{[M: L]} N_{L / K} \operatorname{disc}_{M / L}\left(\left(\beta_{j}\right)\right)
$$

