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Problem Set 2

Andrei Jorza

Due Friday, February 9

You may use the fact that in a Dedekind domain every ideal can be factored uniquely as a product of
prime ideals.

1. Show that every PID is integrally closed and conclude that Z[
√
−163] is not a Euclidean domain.

2. Show that 2 and 3 are irreducible elements of Z[ 1+
√
−19
2 ] and that Z[ 1+

√
−19
2 ]× = {±1}. (Recall that

we used this in lecture.)

3. Show that 14 = 2 · 7 = (1 +
√
−13)(1−

√
−13) are two distinct factorizations into irreducible elements

of Z[
√
−13]. What is the factorization of 14 into prime ideals of Z[

√
−13]?

4. If R is a Dedekind domain, p is a prime ideal of R and I is any ideal let vp(I) be the exponent of p in
the unique factorization of I into prime ideals. If x ∈ R then vp(x) = vp((x)R).

(a) Suppose R is a Dedekind domain, p1, . . . , pn are prime ideals of R and e1, . . . , en ∈ Z. Use the
Chinese Remainder Theorem to show that there exists x ∈ FracR such that vpi(x) = ei for all i.

(b) Conclude that if R is a Dedekind domain with finitely many prime ideals then R is a PID.

(c) Suppose R is a Dedekind domain with finitely many prime ideals p1, . . . , pn. Show that R is a
Euclidean domain with Euclidean function d(r) =

∑
vpi(r). [Hint: reduce to the case when m

and n are coprime and then use the Chinese Remainder Theorem to find the residue r coprime
to all prime ideals pi not dividing n.]

Remark 1. Suppose R is a Dedekind domain and I is an ideal of R. Let R(I) be the subring of Frac(R)
consisting of fractions m

n whose denominators are coprime to I. Then the prime ideals of R(I) are
precisely the (finitely many) prime ideals dividing I.

The remaining two exercises are standard in Algebra 3 and I include them for fun. You
don’t have to write them up.

5. The Euclidean domain (necessarily a PID) Z[ζ3].

(a) If p is a prime ≡ 2 (mod 3) and p | x2 + xy+ y2 with x, y ∈ Z show that p | x, y. [Hint: p− 1 ≡ 1
(mod 3).]

(b) If p is a prime ≡ 1 (mod 3) show that p | a2 + a+ 1 for some integer a. [Hint: F×p is cyclic.]

(c) If p ≡ 1 (mod 3) is a prime in Z which is also a prime in Z[ζ3] then p cannot divide a2 + a+ 1 =
(a− ζ3)(a− ζ23 ) and conclude that p is reducible. Deduce that p = x2 +xy+ y2 for some x, y ∈ Z.

(d) Suppose n = 3k
∏

p≡1 (mod 3) p
np
∏

q≡2 (mod 3) q
mq is a positive integer. Show that x2+xy+y2 = n

has solutions with x, y ∈ Z only if mq are all even in which case the solutions can be enumerated
as

x− yζ3 = u(1− ζ3)k
∏

p≡1 (mod 3)

(ap − bpζ3)up(ap − bpζ23 )np−up

∏
q≡2 (mod 3)

qmq/2

1



where u ∈ Z[ζ3]× = {±1,±ζ3,±ζ23}, p = a2p + apbp + b2p and 0 ≤ up ≤ np. Conclude that the
number of solutions is 6(d+(n) − d−(n)) where d±(n) is the number of divisors of n which are
≡ ±1 (mod 3).

6. The Euclidean domain (necessarily a PID) Z[i].

(a) If p is a prime ≡ 3 (mod 4) and p | x2 +y2 for x, y ∈ Z show that p | x, y. [Hint: (p−1)/2 is odd!]

(b) If p ≡ 1 (mod 4) show that p | a2 + 1 for some a. [Hint: Either use the fact that F×p is cyclic or

show that a =
(
p−1
2

)
! works.]

(c) Show that if p a prime ≡ 1 (mod 4) is also prime in Z[i] then p cannot divide a2+1 = (a+i)(a−i)
and conclude that p cannot be prime in Z[i]. Deduce that p = x2 + y2 for some x, y ∈ Z.

(d) Suppose n = 2k
∏

p≡1 (mod 4) p
np
∏

q≡3 (mod 4) q
mq is a positive integer. Show that x2 + y2 = n

has solutions with x, y ∈ Z only if mq are all even in which case the solutions can be enumerated
as

x+ iy = u(1 + i)k
∏

p≡1 (mod 4)

(ap + bpi)
up(ap − bpi)np−up

∏
q≡3 (mod 4)

qmq/2

where p = a2p + b2p, u ∈ {±1,±i} and 0 ≤ up ≤ np. Conclude that the number of solutions is
4(d+(n)− d−(n)) where d±(n) is the number of divisors of n which are ≡ ±1 (mod 4).
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