Math 80220 Algebraic Number Theory
Problem Set 2

Andrei Jorza

Due Friday, February 9

You may use the fact that in a Dedekind domain every ideal can be factored uniquely as a product of
prime ideals.

1.

2.

Show that every PID is integrally closed and conclude that Z[/—163] is not a Euclidean domain.

Show that 2 and 3 are irreducible elements of Z[/=19 {19] and that Z[1/=19 {w]x = {£1}. (Recall that
we used this in lecture.)

Show that 14 =2-7 = (1 ++/—13)(1 — v/—13) are two distinct factorizations into irreducible elements
of Z[v/—13]. What is the factorization of 14 into prime ideals of Z[/—13]?

If R is a Dedekind domain, p is a prime ideal of R and I is any ideal let v, (1) be the exponent of p in
the unique factorization of I into prime ideals. If € R then v, (z) = vy ((z)R).

(a) Suppose R is a Dedekind domain, py,...,p, are prime ideals of R and eq,...,e, € Z. Use the
Chinese Remainder Theorem to show that there exists « € Frac R such that v, (z) = e; for all 4.

(b) Conclude that if R is a Dedekind domain with finitely many prime ideals then R is a PID.
(¢) Suppose R is a Dedekind domain with finitely many prime ideals py,...,p,. Show that R is a
Euclidean domain with Euclidean function d(r) = ) v,,(r). [Hint: reduce to the case when m

and n are coprime and then use the Chinese Remainder Theorem to find the residue r coprime
to all prime ideals p,; not dividing n.]

Remark 1. Suppose R is a Dedekind domain and [ is an ideal of R. Let Ry be the subring of Frac(R)

consisting of fractions % whose denominators are coprime to /. Then the prime ideals of Ry are

precisely the (finitely many) prime ideals dividing I.

The remaining two exercises are standard in Algebra 3 and I include them for fun. You
don’t have to write them up.

The Euclidean domain (necessarily a PID) Z[(s].
(a) If pis a prime = 2 (mod 3) and p | 22 + 2y + y? with 2,y € Z show that p | z,y. [Hint: p—1=1
(mod 3).]
(b) If p is a prime = 1 (mod 3) show that p | a® + a + 1 for some integer a. [Hint: F is cyclic.]

(c) If p=1 (mod 3) is a prime in Z which is also a prime in Z[(3] then p cannot divide a® + a +1 =
(a—¢3)(a—¢3) and conclude that p is reducible. Deduce that p = 22 + 2y +y? for some z,y € Z.

(d) Suppose n = 3* szl (mod 3) P"" qu2 (mod 3) 4" is a positive integer. Show that 22+zy+y? =n
has solutions with z,y € Z only if m, are all even in which case the solutions can be enumerated

as
e—yG=ul-G)* [ (ap—bG) (@ — b [ @™

p=1 (mod 3) g=2 (mod 3)



where u € Z[(s]* = {£1,£(3, £}, p = a2 + apby + b2 and 0 < u, < n,. Conclude that the
number of solutions is 6(d4(n) — d—(n)) where di(n) is the number of divisors of n which are
= +1 (mod 3).

6. The Euclidean domain (necessarily a PID) Z[i].

If pis a prime = 3 (mod 4) and p | 2% +y? for z,y € Z show that p | x,y. [Hint: (p—1)/2 is odd!]
If p=1 (mod 4) show that p | a® + 1 for some a. [Hint: Either use the fact that F) is cyclic or
show that a = (%)! works.]

Show that if p a prime = 1 (mod 4) is also prime in Z[i] then p cannot divide a?+1 = (a+1)(a—1)
and conclude that p cannot be prime in Z[i]. Deduce that p = 2 + y? for some z,y € Z.
Suppose n = 2 [T=: (mod 4) P"™” [I=s (mod 4) 4" 18 a positive integer. Show that 2 +y*=n
has solutions with =,y € Z only if m, are all even in which case the solutions can be enumerated
as

z +iy = u(l +14)" H (ap + bpi)"“» (ap — byi)"» "7 H qm?
p=1 (mod 4) g=3 (mod 4)

where p = a? + b2, u € {£1,4i} and 0 < u, < n,. Conclude that the number of solutions is
p T Pp P p

4(dy(n) —d_(n)) where d+(n) is the number of divisors of n which are = +1 (mod 4).



