Math 80220 Algebraic Number Theory Problem Set 3

Andrei Jorza

due Friday, February 16

- 1. Show that the ideal $I = (x^2, y)$ of $\mathbb{C}[x, y]$ divides the product of prime ideals (x)(x, y) but I is not a product of prime ideals.
- 2. Show that

$$\int \dots \int_{\substack{x_1,\dots,x_a,y_1,\dots,y_b \ge 0\\ \sum x_i + \sum y_j \le t}} \prod y_j \prod dx_i \prod dy_j = \frac{t^{a+2b}}{(a+2b)!},$$

and deduce that the volume of the region

$$\{(x_1, \dots, x_r, y_1, z_1, \dots, y_s, z_s) \in \mathbb{R}^n \mid |x_1| + \dots + |x_r| + 2\sqrt{y_1^2 + z_1^2 + \dots + 2\sqrt{y_s^2 + z_s^2}} \le t\}$$

with respect to the usual volume form on \mathbb{R}^n is $\frac{2^{r-s}\pi^s t^n}{n!}$.

- 3. Compute the discriminant of the number field $\mathbb{Q}(\zeta_p)$.
- 4. Let K be a number field. Show that $\mu_{\infty}(K) = \{z \in K \mid z^n = 1 \text{ for some } n \ge 1\}$ is a finite set of the form μ_m for some even $m \ge 2$.
- 5. Let K be a number field. Show that $\mathcal{O}_K^{\times} = \{ \alpha \in K \mid |N_{K/\mathbb{Q}}(\alpha)| = 1 \}.$