Math 80220 Algebraic Number Theory Problem Set 3

Andrei Jorza

due Friday, February 16

1. Show that the ideal $I=\left(x^{2}, y\right)$ of $\mathbb{C}[x, y]$ divides the product of prime ideals $(x)(x, y)$ but I is not a product of prime ideals.
2. Show that

$$
\int \cdots \int_{x_{1}, \ldots, x_{a}, y_{1}, \ldots, y_{b} \geq 0}^{\sum x_{i}+\sum y_{j} \leq t} \ \prod y_{j} \prod d x_{i} \prod d y_{j}=\frac{t^{a+2 b}}{(a+2 b)!}
$$

and deduce that the volume of the region

$$
\left\{\left(x_{1}, \ldots, x_{r}, y_{1}, z_{1}, \ldots, y_{s}, z_{s}\right) \in \mathbb{R}^{n}| | x_{1}\left|+\cdots+\left|x_{r}\right|+2 \sqrt{y_{1}^{2}+z_{1}^{2}}+\cdots+2 \sqrt{y_{s}^{2}+z_{s}^{2}} \leq t\right\}\right.
$$

with respect to the usual volume form on \mathbb{R}^{n} is $\frac{2^{r-s} \pi^{s} t^{n}}{n!}$.
3. Compute the discriminant of the number field $\mathbb{Q}\left(\zeta_{p}\right)$.
4. Let K be a number field. Show that $\mu_{\infty}(K)=\left\{z \in K \mid z^{n}=1\right.$ for some $\left.n \geq 1\right\}$ is a finite set of the form μ_{m} for some even $m \geq 2$.
5. Let K be a number field. Show that $\mathcal{O}_{K}^{\times}=\left\{\alpha \in K| | N_{K / \mathbb{Q}}(\alpha) \mid=1\right\}$.

