Math 80220 Algebraic Number Theory Problem Set 4

Andrei Jorza

due Friday, February 23

- 1. Let $f(X) = X^3 3X + 1$.
 - (a) Show that f(X) is irreducible over \mathbb{Q} and has 3 real roots. Let $K = \mathbb{Q}(\alpha)$ where α is a root. Show that

 $3^4 \mathcal{O}_K \subset \mathbb{Z}[\alpha] \subset \mathcal{O}_K.$

[Hint: What is the discriminant of $1, \alpha, \alpha^2$?]

- (b) Show that $\alpha, \alpha + 2$ are units and that $(\alpha + 1)^3 = 3\alpha(\alpha + 2)$ and conclude that $(3)\mathcal{O}_K = (\alpha + 1)^3$ is the factorization of (3) as a product of prime ideals in \mathcal{O}_K .
- (c) Show that $\mathcal{O}_K = \mathbb{Z}[\alpha] + (3)\mathcal{O}_K$. [Hint: Compute the cardinality of $\mathcal{O}_K/(3)$ to show that the equality occurs after quotienting by (3).]
- (d) Deduce that $\mathcal{O}_K = \mathbb{Z}[\alpha]$. [Hint: if e_1, e_2, e_3 is an integral basis for \mathcal{O}_K what can you say about the highest power of 3 in the denominators of e_i ?]
- (e) Show that $\mathcal{O}_K/(2) \cong \mathbb{F}_{2^3}$ and deduce that K has class number 1.
- (f) What is the subgroup $\mu_K \subset \mathcal{O}_K^{\times}$ of roots of unity? [Hint: What is the degree of ζ_n over \mathbb{Q} ?]
- (g) Show that α and $\alpha + 2$ are independent in \mathcal{O}_K^{\times} . Are they a basis for the free part of \mathcal{O}_K^{\times} ? [Hint: For the first part, show that the three real roots of f(X) lie in the intervals (-2, -1), (0, 1) and (1, 2) and if α and $\alpha + 2$ have a dependence then the same is true for the other two roots. For the second part compute $1/(\alpha + 2)$.]
- 2. Let $K = \mathbb{Q}(\sqrt[3]{7})$ with $\mathcal{O}_K = \mathbb{Z}[\sqrt[3]{7}]$.
 - (a) Show that $\operatorname{Cl}(K) \cong \mathbb{Z}/3\mathbb{Z}$ generated by $(2, \sqrt[3]{7} + 1)$. [Feel free to use a computer for multiplying fractional ideals.]
 - (b) Show that $2 \sqrt[3]{7}$ is a unit.
 - (c) Show that in fact $2 \sqrt[3]{7}$ generates the free part of \mathcal{O}_K^{\times} :
 - i. Suppose u > 1 is a generator for the rank 1 abelian group \mathcal{O}_K^{\times} . Let $\sigma(u) = re^{i\theta}$ and $\overline{\sigma}(u)$ be the two complex conjugates of u. Show that $u = r^{-2}$.
 - ii. Show that

$$\operatorname{disc}(1, u, u^2) = -4\sin^2(\theta)(r^3 + r^{-3} - 2\cos(\theta))^2$$

and deduce that

$$|\operatorname{disc}(u)| < 4(u^3 + u^{-3} + 6)$$

[Hint: For fixed $c = \cos(\theta)$ maximize $(1 - c^2)(x - 2c)^2 - x^2$ where $x = r^3 + r^{-3}$.]

iii. Show that $u^3 > |\operatorname{disc}(K)|/4 - 7$. Show that $\operatorname{disc}(K) = -1323$ and deduce that $u^3 > 323.75$. Show that $2 - \sqrt[3]{7} = u^{-k}$ for some k > 0 and deduce that $2 - \sqrt[3]{7}$ is a generator of the free part of \mathcal{O}_K^{\times} . [Feel free to use a calculator for the numerical estimates.]