Math 80220 Algebraic Number Theory Problem Set 4

Andrei Jorza

due Friday, February 23

1. Let $f(X)=X^{3}-3 X+1$.
(a) Show that $f(X)$ is irreducible over \mathbb{Q} and has 3 real roots. Let $K=\mathbb{Q}(\alpha)$ where α is a root. Show that

$$
3^{4} \mathcal{O}_{K} \subset \mathbb{Z}[\alpha] \subset \mathcal{O}_{K}
$$

[Hint: What is the discriminant of $1, \alpha, \alpha^{2}$?]
(b) Show that $\alpha, \alpha+2$ are units and that $(\alpha+1)^{3}=3 \alpha(\alpha+2)$ and conclude that $(3) \mathcal{O}_{K}=(\alpha+1)^{3}$ is the factorization of (3) as a product of prime ideals in \mathcal{O}_{K}.
(c) Show that $\mathcal{O}_{K}=\mathbb{Z}[\alpha]+(3) \mathcal{O}_{K}$. [Hint: Compute the cardinality of $\mathcal{O}_{K} /(3)$ to show that the equality occurs after quotienting by (3).]
(d) Deduce that $\mathcal{O}_{K}=\mathbb{Z}[\alpha]$. [Hint: if e_{1}, e_{2}, e_{3} is an integral basis for \mathcal{O}_{K} what can you say about the highest power of 3 in the denominators of e_{i} ?]
(e) Show that $\mathcal{O}_{K} /(2) \cong \mathbb{F}_{2^{3}}$ and deduce that K has class number 1.
(f) What is the subgroup $\mu_{K} \subset \mathcal{O}_{K}^{\times}$of roots of unity? [Hint: What is the degree of ζ_{n} over \mathbb{Q} ?]
(g) Show that α and $\alpha+2$ are independent in \mathcal{O}_{K}^{\times}. Are they a basis for the free part of \mathcal{O}_{K}^{\times}? [Hint: For the first part, show that the three real roots of $f(X)$ lie in the intervals $(-2,-1),(0,1)$ and $(1,2)$ and if α and $\alpha+2$ have a dependence then the same is true for the other two roots. For the second part compute $1 /(\alpha+2)$.]
2. Let $K=\mathbb{Q}(\sqrt[3]{7})$ with $\mathcal{O}_{K}=\mathbb{Z}[\sqrt[3]{7}]$.
(a) Show that $\mathrm{Cl}(K) \cong \mathbb{Z} / 3 \mathbb{Z}$ generated by $(2, \sqrt[3]{7}+1)$. [Feel free to use a computer for multiplying fractional ideals.]
(b) Show that $2-\sqrt[3]{7}$ is a unit.
(c) Show that in fact $2-\sqrt[3]{7}$ generates the free part of \mathcal{O}_{K}^{\times}:
i. Suppose $u>1$ is a generator for the rank 1 abelian group \mathcal{O}_{K}^{\times}. Let $\sigma(u)=r e^{i \theta}$ and $\bar{\sigma}(u)$ be the two complex conjugates of u. Show that $u=r^{-2}$.
ii. Show that

$$
\operatorname{disc}\left(1, u, u^{2}\right)=-4 \sin ^{2}(\theta)\left(r^{3}+r^{-3}-2 \cos (\theta)\right)^{2}
$$

and deduce that

$$
|\operatorname{disc}(u)|<4\left(u^{3}+u^{-3}+6\right)
$$

[Hint: For fixed $c=\cos (\theta)$ maximize $\left(1-c^{2}\right)(x-2 c)^{2}-x^{2}$ where $x=r^{3}+r^{-3}$.]
iii. Show that $u^{3}>|\operatorname{disc}(K)| / 4-7$. Show that $\operatorname{disc}(K)=-1323$ and deduce that $u^{3}>323.75$. Show that $2-\sqrt[3]{7}=u^{-k}$ for some $k>0$ and deduce that $2-\sqrt[3]{7}$ is a generator of the free part of \mathcal{O}_{K}^{\times}. [Feel free to use a calculator for the numerical estimates.]

