Math 80220 Algebraic Number Theory Problem Set 5

Andrei Jorza

due Friday, March 2

- 1. Let K be a number field, \mathfrak{p} a nonzero prime ideal, and $v = v_{\mathfrak{p}}$ the associated non-archimedean place. The completion K_v is a topological space with topology defined by its metric space structure. Show that K_v is a topological field, i.e., that addition and multiplication : $K_v \times K_v \to K_v$ and inversion $K_v^{\times} \to K_v^{\times}$ are continuous functions where $K_v \times K_v$ is endowed with the product topology and K_v^{\times} with the subset topology.
- 2. Show that $\mathbb{A}_K = \prod_{\{\mathcal{O}_v\}} K_v$ is a locally compact topological ring.
- 3. Recall from class the multiplicative map $|\cdot|_{\mathbb{A}_K} : \mathbb{A}_K \to [0,\infty)$ defined by

$$|(x_v)|_{\mathbb{A}_K} = \prod_v |x_v|_v$$

Show that if $x \in K^{\times}$ then $|\iota(x)|_{\mathbb{A}_K} = 1$ where $\iota: K \hookrightarrow \mathbb{A}_K$ is given by $\iota(x) = (x)_v$.

- 4. If G is a locally compact group there is a unique (up to scalars) measure vol_G on G with the following properties: $\operatorname{vol}_G(X) < \infty$ for all compact subsets $X \subset G$ and $\operatorname{vol}(gX) = \operatorname{vol}(X)$ for all $g \in G$. Such a measure is called a (left) Haar measure on G. Let vol_v be a Haar measure on K_V and vol_K be a Haar measure on \mathbb{A}_K . Show that:
 - (a) if $X \subset K_v$ is compact and $a \in K_v$ then $\operatorname{vol}_v(aX) = |a|_v \operatorname{vol}_v(X)$.
 - (b) if $X \subset \mathbb{A}_K$ is compact and $a \in \mathbb{A}_K$ then $\operatorname{vol}_K(aX) = |a|_{\mathbb{A}_K} \operatorname{vol}_K(X)$.