Math 80220 Algebraic Number Theory Problem Set 6

Andrei Jorza

due Friday, March 9

- 1. Let S be a finite set of finite places of a number field K and $\mathcal{O}_S = \{x \in K \mid v(x) \ge 0, \forall v \notin S\}$ be the subring of S-integers. Show that \mathcal{O}_S^{\times} is a finitely generated abelian group of rank $\mathrm{rk} \mathcal{O}_K^{\times} + |S|$.
- 2. Let v be any place of a number field K. For $w \neq v$ fix constants $\delta_w > 0$ such that $\delta_w = 1$ for almost all w. Show that there exists $x \in K^{\times}$ such that $|x|_w \leq \delta_w$ for all $w \neq v$. [Hint: Use adelic Minkowski.]
- 3. Let v be any place of a number field K. Write $\mathbb{A}_K^v = \prod_{w \neq v, \{\mathcal{O}_w\}}^{\prime} K_w$ for the topological subring of $\prod_{w \neq v} K_w$ consisting of tuples $(x_w)_{w \neq v}$ such that $x_w \in \mathcal{O}_w$ for almost all w. Show that while $K \subset \mathbb{A}_K$ is discrete, $K \subset \mathbb{A}_K^v$ is dense.
- 4. Find an element $x \in \mathbb{Q}$ such that $|x 1|_7, |x 2|_{11}, |x + 2004|_{\infty} < 1/10$.
- 5. Let K be a number field.
 - (a) Show that if I is an ideal there exists a number field L/K such that $I\mathcal{O}_L$ is principal. [Hint: some power of I must be principal.]
 - (b) Show that there exists a number field L/K such that every ideal of \mathcal{O}_K becomes principal in \mathcal{O}_L .