Math 80220 Algebraic Number Theory Problem Set 7

Andrei Jorza

due Friday, March 23

- 1. Let *m* be a square-free integer $\neq 1$. Let $K = \mathbb{Q}(\sqrt{m})$ and \mathcal{O}_K be the ring of integers. Show that the following are prime factorizations of $(p)\mathcal{O}_K$ in \mathcal{O}_K :
 - (a) if $p \mid m$ then $(p)\mathcal{O}_K = (p,\sqrt{m})^2$.
 - (b) if m is odd then

$$(2)\mathcal{O}_{K} = \begin{cases} (2,1+\sqrt{m})^{2} & m \equiv 3 \pmod{4} \\ (2,\frac{1+\sqrt{m}}{2})(2,\frac{1-\sqrt{m}}{2}) & m \equiv 1 \pmod{8} \\ (2) & m \equiv 5 \pmod{8} \end{cases}$$

[Careful how you apply the decomposition theorem from class.]

(c) if p > 2 and $p \nmid m$ then

$$(p)\mathcal{O}_K = \begin{cases} (p, a + \sqrt{m})(p, a - \sqrt{m}) & m \equiv a^2 \pmod{p} \\ (p) & m \text{ not a square mod } p \end{cases}$$

- 2. Let p > 2 be a prime. You may suppose that the ring of integers of $K = \mathbb{Q}(\zeta_{p^n})$ is $\mathcal{O}_K = \mathbb{Z}[\zeta_{p^n}]$. Show that:
 - (a) $(p)\mathcal{O}_K = (p, 1 \zeta_{p^n})^{p^{n-1}(p-1)}$ and
 - (b) if $q \neq p$ is a prime and r is the smallest positive integer such that $q^r \equiv 1 \pmod{p^n}$ then $(q)\mathcal{O}_K = \mathfrak{q}_1 \cdots \mathfrak{q}_d$ where $d = p^{n-1}(p-1)/r$ is the prime factorization of the ideal $(p)\mathcal{O}_K$ and K/\mathbb{Q} is unramified at \mathfrak{q}_i/q with $f_{\mathfrak{q}_i/q} = r$.
- 3. Let $K = \mathbb{Q}(\sqrt[3]{7})$ with ring of integers $\mathcal{O}_K = \mathbb{Z}[\sqrt[3]{7}]$.
 - (a) Determine which integral primes p ramify in K and how.
 - (b) Find examples of unramified primes p with decomposition $(p)\mathcal{O}_K = \mathfrak{q}_1 \dots \mathfrak{q}_r$ in the following cases:
 - i. r = 3, $f_{\mathfrak{q}_i/p} = 1$; ii. r = 2, $f_{\mathfrak{q}_1/p} = 1$ and $f_{\mathfrak{q}_2/p} = 2$; iii. r = 1, $f_{\mathfrak{q}_1/p} = 3$.
- 4. Let m < 0 be square-free and consider $K = \mathbb{Q}(\sqrt{m})$.
 - (a) Show that there is a multiplication map

$$\Phi: \bigoplus_{e_{\mathfrak{p}/p} > 1} (\mathbb{Z}/2\mathbb{Z})[\mathfrak{p}] \to \mathrm{Cl}(K)[2]$$

where $\operatorname{Cl}(K)[2] = \{I \in \operatorname{Cl}(K) | I^2 = 1\}$ and the map is

$$\Phi:\oplus e_i[\mathfrak{p}_i]\mapsto \prod \mathfrak{p}_i^{e_i}$$

- (b) Show that the kernel of the map Φ is isomorphic to $\mathbb{Z}/2\mathbb{Z}$ with generator $\oplus \mathfrak{p}$ where the sum is over $\mathfrak{p} \mid p \mid m$. [Hint: Use that m < 0 to show that (n, \sqrt{m}) is not principal for $n \mid m$ unless n = m. You will have to treat the cases $m \equiv 1, 2 \pmod{4}$ and $m \equiv 3 \pmod{4}$ separately.]
- (c) (Original version of this part was wrong, fixed now) Suppose $[I] \in Cl(K)[2]$. Show that there exists a fractional ideal $J \in [I]$ such that $J = \overline{J}$. [Hint: Show that the principal ideal $I\overline{I}^{-1}$ is generated by some $\alpha \overline{\alpha}^{-1}$ using Hilbert 90.]
- (d) Deduce that Φ is surjective and therefore

$$|\operatorname{Cl}(K)[2]| = 2^{M-1}$$

where M is the number of primes p which ramify in K.