Math 80220 Algebraic Number Theory Problem Set 7

Andrei Jorza

due Friday, March 23

1. Let m be a square-free integer $\neq 1$. Let $K=\mathbb{Q}(\sqrt{m})$ and \mathcal{O}_{K} be the ring of integers. Show that the following are prime factorizations of $(p) \mathcal{O}_{K}$ in \mathcal{O}_{K} :
(a) if $p \mid m$ then $(p) \mathcal{O}_{K}=(p, \sqrt{m})^{2}$.
(b) if m is odd then

$$
(2) \mathcal{O}_{K}=\left\{\begin{array}{lll}
(2,1+\sqrt{m})^{2} & m \equiv 3 & (\bmod 4) \\
\left(2, \frac{1+\sqrt{m}}{2}\right)\left(2, \frac{1-\sqrt{m}}{2}\right) & m \equiv 1 & (\bmod 8) \\
(2) & m \equiv 5 & (\bmod 8)
\end{array}\right.
$$

[Careful how you apply the decomposition theorem from class.]
(c) if $p>2$ and $p \nmid m$ then

$$
(p) \mathcal{O}_{K}= \begin{cases}(p, a+\sqrt{m})(p, a-\sqrt{m}) & m \equiv a^{2} \quad(\bmod p) \\ (p) & m \text { not a square } \bmod p\end{cases}
$$

2. Let $p>2$ be a prime. You may suppose that the ring of integers of $K=\mathbb{Q}\left(\zeta_{p^{n}}\right)$ is $\mathcal{O}_{K}=\mathbb{Z}\left[\zeta_{p^{n}}\right]$. Show that:
(a) $(p) \mathcal{O}_{K}=\left(p, 1-\zeta_{p^{n}}\right)^{p^{n-1}(p-1)}$ and
(b) if $q \neq p$ is a prime and r is the smallest positive integer such that $q^{r} \equiv 1\left(\bmod p^{n}\right)$ then $(q) \mathcal{O}_{K}=$ $\mathfrak{q}_{1} \cdots \mathfrak{q}_{d}$ where $d=p^{n-1}(p-1) / r$ is the prime factorization of the ideal $(p) \mathcal{O}_{K}$ and K / \mathbb{Q} is unramified at \mathfrak{q}_{i} / q with $f_{\mathfrak{q}_{i} / q}=r$.
3. Let $K=\mathbb{Q}(\sqrt[3]{7})$ with ring of integers $\mathcal{O}_{K}=\mathbb{Z}[\sqrt[3]{7}]$.
(a) Determine which integral primes p ramify in K and how.
(b) Find examples of unramified primes p with decomposition $(p) \mathcal{O}_{K}=\mathfrak{q}_{1} \ldots \mathfrak{q}_{r}$ in the following cases:
i. $r=3, f_{\mathfrak{q}_{i} / p}=1$;
ii. $r=2, f_{\mathfrak{q}_{1} / p}=1$ and $f_{\mathfrak{q}_{2} / p}=2$;
iii. $r=1, f_{\mathfrak{q}_{1} / p}=3$.
4. Let $m<0$ be square-free and consider $K=\mathbb{Q}(\sqrt{m})$.
(a) Show that there is a multiplication map

$$
\Phi: \bigoplus_{e_{\mathfrak{p} / p}>1}(\mathbb{Z} / 2 \mathbb{Z})[\mathfrak{p}] \rightarrow \mathrm{Cl}(K)[2]
$$

where $\mathrm{Cl}(K)[2]=\left\{I \in \mathrm{Cl}(K) \mid I^{2}=1\right\}$ and the map is

$$
\Phi: \oplus e_{i}\left[\mathfrak{p}_{i}\right] \mapsto \prod \mathfrak{p}_{i}^{e_{i}}
$$

(b) Show that the kernel of the map Φ is isomorphic to $\mathbb{Z} / 2 \mathbb{Z}$ with generator $\oplus \mathfrak{p}$ where the sum is over $\mathfrak{p}|p| m$. [Hint: Use that $m<0$ to show that (n, \sqrt{m}) is not principal for $n \mid m$ unless $n=m$. You will have to treat the cases $m \equiv 1,2(\bmod 4)$ and $m \equiv 3(\bmod 4)$ separately.]
(c) (Original version of this part was wrong, fixed now) Suppose $[I] \in \mathrm{Cl}(K)[2]$. Show that there exists a fractional ideal $J \in[I]$ such that $J=\bar{J}$. [Hint: Show that the principal ideal $I \bar{I}^{-1}$ is generated by some $\alpha \bar{\alpha}^{-1}$ using Hilbert 90.]
(d) Deduce that Φ is surjective and therefore

$$
|\mathrm{Cl}(K)[2]|=2^{M-1}
$$

where M is the number of primes p which ramify in K.

