Math 80220 Algebraic Number Theory Problem Set 8

Andrei Jorza

due Friday, April 6

- 1. Show that $\mathbb{Q}(\sqrt{3}, \sqrt{5})$ is everywhere unramified over $\mathbb{Q}(\sqrt{15})$. (Remark: $\mathbb{Q}(\sqrt{3}, \sqrt{5})$ is the largest extension of $\mathbb{Q}(\sqrt{15})$ which is everywhere unramified.) [Hint: Compute the different. You may use that that $\mathcal{O}_{\mathbb{Q}(\sqrt{3},\sqrt{5})}$ has as integral basis $1,\sqrt{3},\frac{1+\sqrt{5}}{2},\frac{\sqrt{3}+\sqrt{15}}{2}]$.]
- 2. Consider the extension $K = \mathbb{Q}(\sqrt{2+\sqrt{3}})/\mathbb{Q}$.
 - (a) Write $\alpha = \sqrt{2 + \sqrt{3}}$. Show that the roots of the minimal polynomial of α are $\pm \alpha, \pm \alpha^{-1}$ and deduce that $\alpha \in \mathcal{O}_K^{\times}$.
 - (b) Show that K/\mathbb{Q} is Galois with Galois group $G_{K/\mathbb{Q}} \cong \mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z}$ having generators $\sigma(\alpha) = \alpha^{-1}$ and $\tau(\alpha) = -\alpha$.
 - (c) Show that $(3)\mathcal{O}_K = (\sqrt{3})^2$ is the prime factorization in \mathcal{O}_K . Conclude that $I_{\sqrt{3}/3} = \{1, \sigma\tau\}$ but $P_{\sqrt{3}/3} = \{1\}$. (You may assume that $\mathcal{O}_K = \mathbb{Z}[\sqrt{2+\sqrt{3}}]$.)
 - (d) Show that $(2)\mathcal{O}_K = \mathfrak{q}^4$ where $\mathfrak{q} = (\alpha+1)$ is the prime factorization in \mathcal{O}_K . Show that $I_{\mathfrak{q}/2} = P_{\mathfrak{q}/2} = G_{K/\mathbb{Q}}, \ D_{\mathfrak{q}/2,3} = D_{\mathfrak{q}/2,4} = \{1,\tau\}$ and $D_{\mathfrak{q}/2,m} = \{1\}$ for $m \geq 5$. [Hint: Check that $\alpha+1 \mid \alpha-1$.]
- 3. In this problem you will construct number fields whose rings of integers cannot be generated (as an algebra) by few elements. Let $n \geq 2$ be an integer and let $K = \mathbb{Q}(\sqrt[n]{2})$ with ring of integers \mathcal{O}_K .
 - (a) Suppose $p \nmid 2[\mathcal{O}_K : \mathbb{Z}[\sqrt[n]{2}]]$ be a prime which splits completely in K. Show that $n \mid p-1$ and that $2^{(p-1)/n} \equiv 1 \pmod{p}$.
 - (b) Show that there exists a unique subfield $F \subset \mathbb{Q}(\zeta_p)$ with $[F : \mathbb{Q}] = n$.
 - (c) Let $\mathfrak{q} \mid 2$ be an ideal of $\mathbb{Z}[\zeta_p]$ and $\mathfrak{p} = \mathfrak{q} \cap F$. Show that the image of $\operatorname{Frob}_{\mathfrak{q}/2}$ in $G_{F/\mathbb{Q}}$ is $\operatorname{Frob}_{\mathfrak{p}/2}$ and deduce that $\operatorname{Frob}_{\mathfrak{p}/2} = 1$. [Hint: What is $\operatorname{Frob}_{\mathfrak{q}/2} \in G_{\mathbb{Q}(\zeta_p)/\mathbb{Q}} \cong (\mathbb{Z}/p\mathbb{Z})^{\times}$?]
 - (d) Deduce that 2 splits completely in F.
 - (e) Assume that $\mathcal{O}_F = \mathbb{Z}[\alpha_1, \dots, \alpha_m]$. Show that we have induced ring homomorphisms

$$\mathbb{Z}[X_1,\ldots,X_m] \to \mathcal{O}_F \to \bigoplus_{\mathfrak{p}\mid 2} k_{\mathfrak{p}/2}$$

where the *n* quotients $\mathbb{Z}[X_1,\ldots,X_m] \to k_{\mathfrak{p}/2} \cong \mathbb{F}_2$ are distinct.

(f) Show that there are at most 2^m distinct ring homomorphisms $\mathbb{Z}[X_1,\ldots,X_m] \to \mathbb{F}_2$ and deduce that \mathcal{O}_F cannot be generated as an algebra over \mathbb{Z} by fewer than $\lceil \log_2(n) \rceil$ elements. [Hint: where can X_i go under such a ring homomorphism?]

For example, p = 151 splits completely in $\mathbb{Q}(\sqrt[5]{2})$ and so 2 splits completely in $\mathbb{Q}(\zeta_{151})$. The subfield $F \subset \mathbb{Q}(\zeta_{151})$ of order 5 over \mathbb{Q} is the splitting field of the polynomial $X^5 + X^4 - 60X^3 - 12X^2 + 784X + 128$ and has ring of integers that cannot be generated by two elements. Can it be generated by 3 elements? Moreover, for any n there exist infinitely many p which split completely in $\mathbb{Q}(\sqrt[n]{2})$ and so we have an infinite family of examples. I got this example from http://wstein.org/129-05/challenges.html