Math 80220 Algebraic Number Theory Problem Set 8

Andrei Jorza
due Friday, April 6

1. Show that $\mathbb{Q}(\sqrt{3}, \sqrt{5})$ is everywhere unramified over $\mathbb{Q}(\sqrt{15})$. (Remark: $\mathbb{Q}(\sqrt{3}, \sqrt{5})$ is the largest extension of $\mathbb{Q}(\sqrt{15})$ which is everywhere unramified.) [Hint: Compute the different. You may use that that $\mathcal{O}_{\mathbb{Q}(\sqrt{3}, \sqrt{5})}$ has as integral basis $\left.\left.1, \sqrt{3}, \frac{1+\sqrt{5}}{2}, \frac{\sqrt{3}+\sqrt{15}}{2}\right].\right]$
2. Consider the extension $K=\mathbb{Q}(\sqrt{2+\sqrt{3}}) / \mathbb{Q}$.
(a) Write $\alpha=\sqrt{2+\sqrt{3}}$. Show that the roots of the minimal polynomial of α are $\pm \alpha, \pm \alpha^{-1}$ and deduce that $\alpha \in \mathcal{O}_{K}^{\times}$.
(b) Show that K / \mathbb{Q} is Galois with Galois group $G_{K / \mathbb{Q}} \cong \mathbb{Z} / 2 \mathbb{Z} \times \mathbb{Z} / 2 \mathbb{Z}$ having generators $\sigma(\alpha)=\alpha^{-1}$ and $\tau(\alpha)=-\alpha$.
(c) Show that (3) $\mathcal{O}_{K}=(\sqrt{3})^{2}$ is the prime factorization in \mathcal{O}_{K}. Conclude that $I_{\sqrt{3} / 3}=\{1, \sigma \tau\}$ but $P_{\sqrt{3} / 3}=\{1\}$. (You may assume that $\mathcal{O}_{K}=\mathbb{Z}[\sqrt{2+\sqrt{3}}]$.)
(d) Show that (2) $\mathcal{O}_{K}=\mathfrak{q}^{4}$ where $\mathfrak{q}=(\alpha+1)$ is the prime factorization in \mathcal{O}_{K}. Show that $I_{\mathfrak{q} / 2}=$ $P_{\mathfrak{q} / 2}=G_{K / \mathbb{Q}}, D_{\mathfrak{q} / 2,3}=D_{\mathfrak{q} / 2,4}=\{1, \tau\}$ and $D_{\mathfrak{q} / 2, m}=\{1\}$ for $m \geq 5$. [Hint: Check that $\alpha+1 \mid \alpha-1$.
3. In this problem you will construct number fields whose rings of integers cannot be generated (as an algebra) by few elements. Let $n \geq 2$ be an integer and let $K=\mathbb{Q}(\sqrt[n]{2})$ with ring of integers \mathcal{O}_{K}.
(a) Suppose $p \nmid 2\left[\mathcal{O}_{K}: \mathbb{Z}[\sqrt[n]{2}]\right]$ be a prime which splits completely in K. Show that $n \mid p-1$ and that $2^{(p-1) / n} \equiv 1(\bmod p)$.
(b) Show that there exists a unique subfield $F \subset \mathbb{Q}\left(\zeta_{p}\right)$ with $[F: \mathbb{Q}]=n$.
(c) Let $\mathfrak{q} \mid 2$ be an ideal of $\mathbb{Z}\left[\zeta_{p}\right]$ and $\mathfrak{p}=\mathfrak{q} \cap F$. Show that the image of Frob $_{\mathfrak{q} / 2}$ in $G_{F / \mathbb{Q}}$ is Frob $_{\mathfrak{p} / 2}$ and deduce that $\operatorname{Frob}_{\mathfrak{p} / 2}=1$. [Hint: What is $\operatorname{Frob}_{\mathfrak{q} / 2} \in G_{\mathbb{Q}\left(\zeta_{\mathfrak{p}}\right) / \mathbb{Q}} \cong(\mathbb{Z} / p \mathbb{Z})^{\times}$?]
(d) Deduce that 2 splits completely in F.
(e) Assume that $\mathcal{O}_{F}=\mathbb{Z}\left[\alpha_{1}, \ldots, \alpha_{m}\right]$. Show that we have induced ring homomorphisms

$$
\mathbb{Z}\left[X_{1}, \ldots, X_{m}\right] \gg \mathcal{O}_{F}>\oplus_{\mathfrak{p} \mid 2} k_{\mathfrak{p} / 2}
$$

where the n quotients $\mathbb{Z}\left[X_{1}, \ldots, X_{m}\right] \rightarrow k_{\mathfrak{p} / 2} \cong \mathbb{F}_{2}$ are distinct.
(f) Show that there are at most 2^{m} distinct ring homomorphisms $\mathbb{Z}\left[X_{1}, \ldots, X_{m}\right] \rightarrow \mathbb{F}_{2}$ and deduce that \mathcal{O}_{F} cannot be generated as an algebra over \mathbb{Z} by fewer than $\left\lceil\log _{2}(n)\right\rceil$ elements. [Hint: where can X_{i} go under such a ring homomorphism?]
For example, $p=151$ splits completely in $\mathbb{Q}(\sqrt[5]{2})$ and so 2 splits completely in $\mathbb{Q}\left(\zeta_{151}\right)$. The subfield $F \subset \mathbb{Q}\left(\zeta_{151}\right)$ of order 5 over \mathbb{Q} is the splitting field of the polynomial $X^{5}+X^{4}-60 X^{3}-12 X^{2}+784 X+128$ and has ring of integers that cannot be generated by two elements. Can it be generated by 3 elements? Moreover, for any n there exist infinitely many p which split completely in $\mathbb{Q}(\sqrt[n]{2})$ and so we have an infinite family of examples. I got this example from http://wstein.org/129-05/challenges.html

