Math 80220 Algebraic Number Theory Problem Set 9

Andrei Jorza

due Friday, April 13

Caution: In many places, most notably Sage, the higher ramification groups are shifted left by 1: the -1 group being D, the 0 group being I, the 1 group being P, etc. It is a constant source of annoyance.

1. Suppose $K=\mathbb{Q}(\alpha)$ is a number field with α algebraic with minimal polynomial $f(X)$. Show that if the discriminant of $1, \alpha, \ldots, \alpha^{n-1}$ is square-free then $\mathcal{O}_{K}=\mathbb{Z}[\alpha]$. [Hint: Write $1, \alpha, \ldots, \alpha^{n-1}$ in terms of an integral basis.]
2. Let α be a root of $f(X)=X^{3}-X-1$.
(a) Show that $\mathcal{O}_{K}=\mathbb{Z}[\alpha]$.
(b) Compute $\mathcal{D}_{K / \mathbb{Q}}$ and determine explicitly all ramified primes $\mathfrak{q} / \mathfrak{p}$ of K / \mathbb{Q}.
3. (a) Let K be a number field. Show that $\left\|\mathcal{D}_{K / \mathbb{Q}}\right\|=|\operatorname{disc}(K)|$. [Hint: Use volumes.]
(b) Suppose $M / L / K$ are number fields. Show that $\mathcal{D}_{M / K}=\mathcal{D}_{M / L} \mathcal{D}_{L / K}$.
4. Let $K=\mathbb{Q}\left(\zeta_{p^{n}}\right)$ with ring of integers $\mathcal{O}_{K}=\mathbb{Z}\left[\zeta_{p^{n}}\right]$. Recall from class that p is totally ramified in K and $p \mathcal{O}_{K}=\mathfrak{q}^{\varphi\left(p^{n}\right)}$ where $\mathfrak{q}=\left(\zeta_{p^{n}}-1\right)$.
(a) Suppose $p \nmid b$ and $1 \leq r \leq n$. Show that $v_{\mathfrak{q}}\left(\zeta_{p^{n}}^{p^{r} b}-1\right)=\varphi\left(p^{n}\right) / \varphi\left(p^{n-r}\right)=p^{r}$. [Hint: Look at how p factors in the intermediary extension $\mathbb{Q}\left(\zeta_{p^{n-r}}\right)$ and in K itself. It should work out in a couple of lines.]
(b) Show that $D_{\mathfrak{q} / p, 0}=D_{\mathfrak{q} / p, 1} \cong\left(\mathbb{Z} / p^{n} \mathbb{Z}\right)^{\times}$and for $s \geq 0$

$$
D_{\mathfrak{q} / p, p^{s}+1}=\ldots=D_{\mathfrak{q} / p, p^{s+1}} \cong 1+p^{s+1}\left(\mathbb{Z} / p^{n} \mathbb{Z}\right)
$$

(c) Show directly that $\mathcal{D}_{K / \mathbb{Q}}=\left(\Phi_{p^{n}}^{\prime}\left(\zeta_{p^{n}}\right)\right)=\mathfrak{q}^{p^{n-1}(n p-n-1)}$ and verify directly that

$$
v_{\mathfrak{q}}\left(\mathcal{D}_{K / \mathbb{Q}}=\sum_{\ell \geq 1}\left(\left|D_{\mathfrak{q} / p, \ell}\right|-1\right)\right.
$$

5. Let $p \neq q$ be two odd primes. From algebra you know that if we write $p^{*}=(-1)^{(p-1) / 2} p$ then $\mathbb{Q}\left(\sqrt{p^{*}}\right) \subset \mathbb{Q}\left(\zeta_{p}\right) .\left(\right.$ E.g., $\left.\mathbb{Q}(\sqrt{\operatorname{disc}(K)})=\mathbb{Q}\left(\sqrt{p^{*}}\right) \subset K.\right)$
(a) Show that q splits in $\mathbb{Q}\left(\sqrt{p^{*}}\right)$ if and only if q is a product of evenly many prime ideals of $\mathbb{Q}\left(\zeta_{p}\right)$.
(b) Deduce the following equality of Legendre symbols: $\left(\frac{p^{*}}{q}\right)=\left(\frac{q}{p}\right)$. [Hint: Use your knowledge of how a prime splits in an extension using factorizations of polynomials modulo primes.]
(c) Show quadratic reciprocity:

$$
\left(\frac{p}{q}\right)\left(\frac{q}{p}\right)=(-1)^{\frac{p-1}{2} \cdot \frac{q-1}{2}}
$$

[Hint: Use that $\left(\frac{-1}{p}\right)=(-1)^{(p-1) / 2}$ and the multiplicativity of Legendre symbols.]

