Math 80220 Algebraic Number Theory Problem Set 10

Andrei Jorza

due Friday, April 20

Algebraic K-theory is an important homological algebra theory. Borel proved that if F is a number field and $n \geq 0$ then $K_{n} \mathcal{O}_{F}$ is a finitely generated abelian group. In fact $K_{0} \mathcal{O}_{F} \cong \mathrm{Cl}(F) \oplus \mathbb{Z}$ has rank 1, $K_{1} \mathcal{O}_{F} \cong \mathcal{O}_{F}^{\times}$has rank $r_{1}+r_{2}-1$, and for $n \geq 2$:

$$
\operatorname{rk} K_{n} \mathcal{O}_{F}= \begin{cases}0 & n=2 i \\ r_{1}+r_{2} & n=4 i+1 \\ r_{2} & n=4 i-1\end{cases}
$$

where r_{1} is the number of real places and r_{2} is the number of complex places. When S is a finite set of finite places then $K_{0} \mathcal{O}_{F, S} \cong \mathrm{Cl}_{S}(F) \oplus \mathbb{Z}$ has rank $1, K_{1} \mathcal{O}_{F, S} \cong \mathcal{O}_{F, S}^{\times}$has rank $r_{1}+r_{2}+|S|-1$, and for $n \geq 2$, $\operatorname{rk} K_{n} \mathcal{O}_{F, S}=\operatorname{rk} K_{n} \mathcal{O}_{F}$.

1. Let F be a number field and S a finite (possibly empty) set of prime ideals of F. Let

$$
\zeta_{F, S}(s)=\sum_{I \text { ideal of } \mathcal{O}_{F, S}} \frac{1}{\|I\|^{s}}=\prod_{\mathfrak{p} \in S}\left(1-\frac{1}{\|\mathfrak{p}\|^{s}}\right) \zeta_{F}(s)
$$

Show that for $m \geq 1$ the order of vanishing at $s=1-m$ of the S-Dedekind zeta function is

$$
\operatorname{ord}_{s=1-m} \zeta_{F, S}(s)=\operatorname{rk} K_{2 m-1} \mathcal{O}_{F, S}
$$

[Hint: This is straightforward using the functional equation.] (This is an elementary example of the Beilinson conjecture.)
2. Consider the functions $\mathcal{B}(x)=\frac{x}{e^{x}-1}$ and $\mathcal{B}(x, z)=\frac{x e^{x z}}{e^{x}-1}$.
(a) Show that the Taylor expansion of $\mathcal{B}(x)$ around $x=0$ is of the form

$$
\frac{x}{e^{x}-1}=\sum_{n \geq 0} B_{n} \frac{x^{n}}{n!}
$$

where $B_{n} \in \mathbb{Q}$ are such that $B_{2 k+1}=0$ if $k \geq 1$. The coefficients B_{n} are known as the Bernoulli numbers. [Hint: Show that $\mathcal{B}(x)+x / 2$ is even.]
(b) Show that " $B^{n}=(B+1)^{n}$ " is satisfied by the Bernoulli numbers in the sense that

$$
B_{n}=\sum_{k=0}^{n}\binom{n}{k} B_{k}
$$

when $n \neq 1$. [Hint: Compute the power series product $\mathcal{B}(x) \exp (x)$.]
(c) Show that $B_{0}=1, B_{1}=-\frac{1}{2}, B_{2}=\frac{1}{6}$ and $B_{4}=-\frac{1}{30}$. [Hint: work $\left(\bmod x^{2}\right)$ and then use the previous part.]
(d) Show that

$$
\mathcal{B}(x, z)=\sum_{n \geq 0} B_{n}(z) \frac{x^{n}}{n!}
$$

where $B_{n}(z)=\sum_{k=0}^{n}\binom{n}{k} B_{n-k} z^{k}$ are polynomials in z of degree n (called the Bernoulli polynomials).
(e) With B_{n} and $B_{n}(z)$ as above, show that for $n, m \geq 1$ (with the convention $0^{0}=1$) one has

$$
\begin{aligned}
\sum_{k=0}^{n-1} k^{m-1} & =\frac{B_{m}(n)-B_{m}}{m} \\
& =\frac{1}{m} \sum_{k=0}^{m-1}\binom{m}{k} B_{k} n^{m-k}
\end{aligned}
$$

[Hint: Take $\sum_{m \geq 1}(\cdot) \frac{x^{m}}{m!}$ of the above expressions and compare generating functions.]
3. Take for granted that

$$
\sin (z)=z \prod_{n \geq 1}\left(1-\frac{z^{2}}{n^{2} \pi^{2}}\right)
$$

(a) Show that

$$
z \operatorname{cotan}(z)=1+2 \sum_{n=1}^{\infty} \frac{z^{2}}{z^{2}-n^{2} \pi^{2}}
$$

[Hint: Take logarithmic derivative of $\sin (z)$.]
(b) Show that

$$
z \operatorname{cotan}(z)=1+\sum_{n \geq 2}(2 i)^{n} B_{n} \frac{z^{n}}{n!}
$$

[Hint: Plug in $x=2 i z$ in $\mathcal{B}(x)$ and recall that $e^{i z}=\cos (z)+i \sin (z)$.]
(c) Show that

$$
\frac{z^{2}}{z^{2}-n^{2} \pi^{2}}=-\sum_{k \geq 1} \frac{z^{2 k}}{n^{2 k} \pi^{2 k}}
$$

and conclude that

$$
z \operatorname{cotan}(z)=1-2 \sum_{k \geq 1} \frac{z^{2 k} \zeta(2 k)}{\pi^{2 k}}
$$

(d) Deduce that for $n \geq 1$,

$$
\zeta(2 n)=\frac{(-1)^{n+1} B_{2 n}(2 \pi)^{2 n}}{2(2 n)!}
$$

(e) Show that for $n \geq 1$

$$
\zeta(1-2 n)=-\frac{B_{2 n}}{2 n}
$$

and thus make sense of the famous expression

$$
1+2+3+\cdots=-\frac{1}{12}
$$

[Hint: Use the functional equation.]

