Math 80220 Algebraic Number Theory Problem Set 11

Andrei Jorza
due Friday, May 4

1. Let $f \in \mathbb{Z}[X]$ be a nonzero polynomial such that for all but finitely many primes p the polynomial f $\bmod p$ splits into linear factors in $\mathbb{F}_{p}[X]$.
(a) If f is irreducible and K is the splitting field of f show that for all but finitely many primes p the element Frob $_{\mathfrak{p} / p}=1$ for $\mathfrak{p} \mid p$ prime ideal of K and conclude that $\operatorname{deg} f=1$. [Hint: Chebotarev.]
(b) Show that f splits into linear factors in $\mathbb{Z}[X]$.
2. Suppose $f \in \mathbb{Z}[X]$ is a monic irreducible polynomial such that $f \bmod p$ has a root in \mathbb{F}_{p} for all but finitely many primes p.
(a) Let K / \mathbb{Q} be the splitting field of f. If $\operatorname{deg} f>1$ show that there exists $\sigma \in \operatorname{Gal}(K / \mathbb{Q})$ such that $\sigma(\alpha) \neq \alpha$ for every root α of f. (You may use the fact, contained in the problem at the end of this set, that if a group G acts faithfully and transitively on a set X with at least 2 elements then some $g \in G$ has no fixed points in X.)
(b) Show that there exist infinitely many primes p such that Frob_{p} is the conjugacy class of σ.
(c) Show that for all but finitely many $p, \operatorname{Frob}_{p}$ has a fixed point and deduce that f is linear.
3. (a) Show that $f(X)=\left(X^{2}-2\right)\left(X^{2}-3\right)\left(X^{2}-6\right)$ has a root in \mathbb{F}_{p} for every prime p but no root in \mathbb{Z}. [Hint: \mathbb{F}_{p}^{\times}is cyclic.]
(b) Show that $f(X)=\left(X^{3}-2\right)\left(X^{2}+X+1\right)$ has a root in \mathbb{F}_{p} for every prime p but no root in \mathbb{Z}. [Hint: treat $p \equiv \pm 1(\bmod 3)$ separately.]
(c) Show that if $f(X)$ has a root in \mathbb{F}_{p} for every prime p but no root in \mathbb{Z} then $\operatorname{deg} f \geq 5$. [Hint: Use the previous problem to reduce to a product of two quadratics and recall that $X^{2}-a$ has a root $\bmod p$ if and only if $\operatorname{Frob}_{p}=1$ in $\mathbb{Q}(\sqrt{a})$.]
4. For a set of integer primes \mathcal{P} define

$$
\begin{aligned}
a_{\mathcal{P}}(x) & =|\{p \in \mathcal{P} \mid p \leq x\}| \\
b_{\mathcal{P}}(x) & =\sum_{p \in \mathcal{P}, p \leq x} \frac{1}{p} \\
Z_{\mathcal{P}}(s) & =\sum_{p \in \mathcal{P}} \frac{1}{p^{s}}
\end{aligned}
$$

When \mathcal{P} is the set of all primes we'll drop the subscript. Let

$$
\begin{aligned}
\bar{\delta}_{\text {nat }}(\mathcal{P}) & =\limsup _{x \rightarrow \infty} \frac{a_{\mathcal{P}}(x)}{a(x)} \\
\bar{\delta}_{\mathrm{log}}(\mathcal{P}) & =\limsup _{x \rightarrow \infty} \frac{b_{\mathcal{P}}(x)}{b(x)} \\
\bar{\delta}(\mathcal{P}) & =\limsup _{s \rightarrow 1^{+}} \frac{Z_{\mathcal{P}}(s)}{Z(s)}
\end{aligned}
$$

and analogously $\underline{\delta}_{\text {nat }}(\mathcal{P}), \underline{\delta}_{\log }(\mathcal{P})$, and $\underline{\delta}(\mathcal{P})$ using liminf.
(a) Show that for integers $x \geq 2$ one has

$$
b_{\mathcal{P}}(x)=\frac{a_{\mathcal{P}}(x)}{x}+\sum_{n=2}^{x-1} \frac{a_{\mathcal{P}}(n)}{n(n+1)} .
$$

(b) Show that for $\operatorname{Re} s>1$ one has

$$
Z_{\mathcal{P}}(s)=\sum_{n \geq 2} b_{\mathcal{P}}(n)\left(\frac{1}{n^{s-1}}-\frac{1}{(n+1)^{s-1}}\right)
$$

(c) Conclude that

$$
\underline{\delta}_{\text {nat }}(\mathcal{P}) \leq \underline{\delta}_{\log }(\mathcal{P}) \leq \underline{\delta}(\mathcal{P}) \leq \bar{\delta}(\mathcal{P}) \leq \bar{\delta}_{\log }(\mathcal{P}) \leq \bar{\delta}_{\text {nat }}(\mathcal{P})
$$

In particular, the existence of natural density implies the existence of logarithmic density, which in turn implies the existence of Dirichlet density.
(You may assume that $a(x)=O(x / \log x)$ for convergence issues.)
5. Let $p>3, p \equiv 3(\bmod 4)$ be a prime number and $K=\mathbb{Q}\left(\zeta_{p}\right)$. Recall from the first homework that $\mathbb{Q}(\sqrt{-p}) \subset K$.
(a) The group $G=\operatorname{Gal}(K / \mathbb{Q}) \cong(\mathbb{Z} / p \mathbb{Z})^{\times}$is cyclic and therefore so is its character group \widehat{G}. Denote χ a generator, taking a generator of G to ζ_{p-1}. Show that

$$
\chi^{(p-1) / 2}(x)=\left(\frac{x}{p}\right)
$$

(b) Show that if H is the subgroup of $G \cong \mathbb{Z} /(p-1) \mathbb{Z}$ corresponding to $\{0,2,4, \ldots, p-3\} \subset$ $\{0,1,2, \ldots, p-2\}$ then the fixed subfield is $K^{H}=\mathbb{Q}(\sqrt{-p})$. [Hint: Show that there is only one quadratic subfield of K.]
(c) Show that the characters χ^{k} and $\chi^{k+(p-1) / 2}$ are equal on H and conclude that the characters of $\operatorname{Gal}(\mathbb{Q}(\sqrt{-p}) / \mathbb{Q})$ are 1 and (\dot{p}). Deduce that

$$
\tau\left(\left(\frac{\cdot}{p}\right)\right)=\sqrt{-p}
$$

[Hint: For the Gauss sum, use the result from class.]
(d) Show that

$$
L\left(\left(\frac{\cdot}{p}\right), 1\right)=\frac{\pi h_{\mathbb{Q}(\sqrt{-p})}}{\sqrt{p}}
$$

and conclude that

$$
B_{1,(\dot{\bar{p}})}=-h_{\mathbb{Q}(\sqrt{-p})}
$$

and thus that

$$
h_{\mathbb{Q}(\sqrt{-p})}=-\frac{1}{p} \sum_{k=1}^{p}\left(\frac{k}{p}\right) k .
$$

Useful

You do not need to do these exercises.

1. Let G be a group acting faithfully (i.e., $G \rightarrow \operatorname{Aut}(X)$ is injective) and transitively (i.e., for any x, y there exists g such that $g x=y$) on a finite set X with more than one element.
(a) If every $g \in G$ has a fixed point, i.e., $x \in X$ such that $g x=x$, show that $G=\cup_{x \in X} \operatorname{Stab}_{G}(x)=$ $\cup_{g \in G} g \operatorname{Stab}_{G}\left(x_{0}\right) g^{-1}$ for a fixed x_{0}.
(b) If H is the maximal proper subgroup of G containing $\operatorname{Stab}_{G}\left(x_{0}\right)$ show that H is not normal.
(c) Deduce that the normalizer $N_{G}(H)=H$ and thus that $\left\{g H g^{-1} \mid g \in G\right\}=\left\{g H g^{-1} \mid g \in G / H\right\}$.
(d) Deduce that $\cup g H g^{-1}$ has at most $(|H|-1)[G: H]+1$ elements.
(e) Derive a contradiction and conclude that there exists $g \in G$ such that g has no fixed points.
