Math 80220 Algebraic Number Theory Problem Set 11

Andrei Jorza

due Friday, May 4

- 1. Let $f \in \mathbb{Z}[X]$ be a nonzero polynomial such that for all but finitely many primes p the polynomial f mod p splits into linear factors in $\mathbb{F}_p[X]$.
 - (a) If f is irreducible and K is the splitting field of f show that for all but finitely many primes p the element $\operatorname{Frob}_{\mathfrak{p}/p} = 1$ for $\mathfrak{p} \mid p$ prime ideal of K and conclude that deg f = 1. [Hint: Chebotarev.]
 - (b) Show that f splits into linear factors in $\mathbb{Z}[X]$.
- 2. Suppose $f \in \mathbb{Z}[X]$ is a monic irreducible polynomial such that $f \mod p$ has a root in \mathbb{F}_p for all but finitely many primes p.
 - (a) Let K/\mathbb{Q} be the splitting field of f. If deg f > 1 show that there exists $\sigma \in \text{Gal}(K/\mathbb{Q})$ such that $\sigma(\alpha) \neq \alpha$ for every root α of f. (You may use the fact, contained in the problem at the end of this set, that if a group G acts faithfully and transitively on a set X with at least 2 elements then some $g \in G$ has no fixed points in X.)
 - (b) Show that there exist infinitely many primes p such that Frob_p is the conjugacy class of σ .
 - (c) Show that for all but finitely many p, Frob_p has a fixed point and deduce that f is linear.
- 3. (a) Show that $f(X) = (X^2 2)(X^2 3)(X^2 6)$ has a root in \mathbb{F}_p for every prime p but no root in \mathbb{Z} . [Hint: \mathbb{F}_p^{\times} is cyclic.]
 - (b) Show that $f(X) = (X^3 2)(X^2 + X + 1)$ has a root in \mathbb{F}_p for every prime p but no root in \mathbb{Z} . [Hint: treat $p \equiv \pm 1 \pmod{3}$ separately.]
 - (c) Show that if f(X) has a root in \mathbb{F}_p for every prime p but no root in \mathbb{Z} then deg $f \ge 5$. [Hint: Use the previous problem to reduce to a product of two quadratics and recall that $X^2 a$ has a root mod p if and only if $\operatorname{Frob}_p = 1$ in $\mathbb{Q}(\sqrt{a})$.]
- 4. For a set of integer primes \mathcal{P} define

$$a_{\mathcal{P}}(x) = |\{p \in \mathcal{P} \mid p \le x\}|$$
$$b_{\mathcal{P}}(x) = \sum_{p \in \mathcal{P}, p \le x} \frac{1}{p}$$
$$Z_{\mathcal{P}}(s) = \sum_{p \in \mathcal{P}} \frac{1}{p^s}.$$

When \mathcal{P} is the set of all primes we'll drop the subscript. Let

$$\overline{\delta}_{\mathrm{nat}}(\mathcal{P}) = \limsup_{x \to \infty} \frac{a_{\mathcal{P}}(x)}{a(x)}$$
$$\overline{\delta}_{\mathrm{log}}(\mathcal{P}) = \limsup_{x \to \infty} \frac{b_{\mathcal{P}}(x)}{b(x)}$$
$$\overline{\delta}(\mathcal{P}) = \limsup_{s \to 1^+} \frac{Z_{\mathcal{P}}(s)}{Z(s)},$$

and analogously $\underline{\delta}_{nat}(\mathcal{P})$, $\underline{\delta}_{log}(\mathcal{P})$, and $\underline{\delta}(\mathcal{P})$ using liminf.

(a) Show that for integers $x \ge 2$ one has

$$b_{\mathcal{P}}(x) = \frac{a_{\mathcal{P}}(x)}{x} + \sum_{n=2}^{x-1} \frac{a_{\mathcal{P}}(n)}{n(n+1)}.$$

(b) Show that for $\operatorname{Re} s > 1$ one has

$$Z_{\mathcal{P}}(s) = \sum_{n \ge 2} b_{\mathcal{P}}(n) \left(\frac{1}{n^{s-1}} - \frac{1}{(n+1)^{s-1}} \right)$$

(c) Conclude that

$$\underline{\delta}_{\mathrm{nat}}(\mathcal{P}) \leq \underline{\delta}_{\mathrm{log}}(\mathcal{P}) \leq \underline{\delta}(\mathcal{P}) \leq \overline{\delta}(\mathcal{P}) \leq \overline{\delta}_{\mathrm{log}}(\mathcal{P}) \leq \overline{\delta}_{\mathrm{nat}}(\mathcal{P}).$$

In particular, the existence of natural density implies the existence of logarithmic density, which in turn implies the existence of Dirichlet density.

(You may assume that $a(x) = O(x/\log x)$ for convergence issues.)

- 5. Let p > 3, $p \equiv 3 \pmod{4}$ be a prime number and $K = \mathbb{Q}(\zeta_p)$. Recall from the first homework that $\mathbb{Q}(\sqrt{-p}) \subset K$.
 - (a) The group $G = \operatorname{Gal}(K/\mathbb{Q}) \cong (\mathbb{Z}/p\mathbb{Z})^{\times}$ is cyclic and therefore so is its character group \widehat{G} . Denote χ a generator, taking a generator of G to ζ_{p-1} . Show that

$$\chi^{(p-1)/2}(x) = \left(\frac{x}{p}\right)$$

- (b) Show that if H is the subgroup of $G \cong \mathbb{Z}/(p-1)\mathbb{Z}$ corresponding to $\{0, 2, 4, \ldots, p-3\} \subset \{0, 1, 2, \ldots, p-2\}$ then the fixed subfield is $K^H = \mathbb{Q}(\sqrt{-p})$. [Hint: Show that there is only one quadratic subfield of K.]
- (c) Show that the characters χ^{k} and $\chi^{k+(p-1)/2}$ are equal on H and conclude that the characters of $\operatorname{Gal}(\mathbb{Q}(\sqrt{-p})/\mathbb{Q})$ are 1 and $(\frac{\cdot}{p})$. Deduce that

$$\tau\left(\left(\frac{\cdot}{p}\right)\right) = \sqrt{-p}$$

[Hint: For the Gauss sum, use the result from class.] (d) Show that

$$L\left(\left(\frac{\cdot}{p}\right),1\right) = \frac{\pi h_{\mathbb{Q}(\sqrt{-p})}}{\sqrt{p}}$$

and conclude that

$$B_{1,\left(\frac{\cdot}{p}\right)} = -h_{\mathbb{Q}(\sqrt{-p})}$$

and thus that

$$h_{\mathbb{Q}(\sqrt{-p})} = -\frac{1}{p} \sum_{k=1}^{p} \left(\frac{k}{p}\right) k.$$

Useful

You do not need to do these exercises.

- 1. Let G be a group acting faithfully (i.e., $G \to \operatorname{Aut}(X)$ is injective) and transitively (i.e., for any x, y there exists g such that gx = y) on a finite set X with more than one element.
 - (a) If every $g \in G$ has a fixed point, i.e., $x \in X$ such that gx = x, show that $G = \bigcup_{x \in X} \operatorname{Stab}_G(x) = \bigcup_{g \in G} g \operatorname{Stab}_G(x_0) g^{-1}$ for a fixed x_0 .
 - (b) If H is the maximal proper subgroup of G containing $\operatorname{Stab}_G(x_0)$ show that H is not normal.
 - (c) Deduce that the normalizer $N_G(H) = H$ and thus that $\{gHg^{-1}|g \in G\} = \{gHg^{-1}|g \in G/H\}.$
 - (d) Deduce that $\cup gHg^{-1}$ has at most (|H| 1)[G:H] + 1 elements.
 - (e) Derive a contradiction and conclude that there exists $g \in G$ such that g has no fixed points.