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Lecture 1
2018-01-17

(Thanks to Matt Schoenbauer for today’s notes.)

1 Euclidean domains
Definition 1.1. R is a Euclidean Domain if there exists a function d : R→ Z≥0 such that

• d(x) = 0 ⇐⇒ x = 0

• For all a, b ∈ R \ {0}, there exist q, r ∈ R such that a = bq + r and d(r) < d(b). This is called division
with remainder. q and r are not necessarily unique.

Example 1.2. • Z, where d(x) = |x|.

• If F is a field, F [x] is a Euclidean Domain if

d(P ) =

{
0 if P = 0

1 + deg(P ) otherwise

• Some classical examples from Algebra 3:

Z[i] Z[ζ3] Z[
√

2]

Here ζ3 = e2πi/3 = −1+i
√

3
2 . In these three cases, the norm function N(x) supplies a Euclidean function.

The norm function N(x) is defined for x ∈ Q(
√
r), where r is a square-free integer (with

√
r /∈ Q), by

N(u+ v
√
r) = u2 − rv2.

When r < 0 it can be seen that N(u+ v
√
r) = |u+ v

√
r|2 is the square of the usual complex modulus

function. When r > 0, however, the norm function doesn’t measure distance in any meaningful way and
takes negative values. Nevertheless, the norm function N(x) is multiplicative, i.e., N(ab) = N(a)N(b),
and (since

√
r /∈ Q), N(x) = 0 iff x = 0.

In the three examples above the Euclidean function is defined as

d(x) = |N(x)|.

We ask the following question: suppose r ∈ Z is square-free with
√
r /∈ Q. Under what circumstances

does the norm function yield a Euclidean function d(x) = |N(x)| on Z[
√
r]? What about on Z[ 1+

√
r

2 ] when
r ≡ 1 (mod 4)? It’s worth pointing out that even if |N(x)| is not a Euclidean function there might be other
Euclidean functions.

First, since N(x) = 0 iff x = 0 it follows that d(x) = |N(x)| always satisfies the first condition for being
a Euclidean function. We replace the second condition with a simpler criterion:
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Lemma 1.3. Suppose r is as above, and let R = Z[
√
r] (or Z[ 1+

√
r

2 ] if r ≡ 1 mod 4). Then d(x) is a
Euclidean norm function on R if and only if for all z ∈ Q(

√
r) there exists α ∈ R such that d(z − α) < 1.

Proof. We would like to show that for all a, b 6= 0, there exists q and r such that a = bq+ r and d(r) < d(b).
We have a/b ∈ Q(

√
r). Choose α so that d(a/b− α) < 1. Then we set q = α and r = a− bα. Then clearly

a = bq + r and
d(r) = d(a− bα) = d(b)d(a/b− α) < d(b)

as desired. The converse follows from a similar argument.

Example 1.4. Let R = Z[i]. The fraction field of R is Q[i] ⊂ C. We check with a (geometric) lattice
argument that for all z ∈ C, there exists α ∈ Z[i] such that |z − α| < 1. In this case d(z − α) = |z − α|2 < 1
as desired. This is the standard proof.

Proposition 1.5. If r < 0, d(x) is a Euclidean norm function on Z[
√
r] if and only if r = −1 or −2.

Proof. We will apply Lemma 1.3. Essentially we need to show that only when r = −1,−2 we can find, for
each z ∈ Q(

√
r) ⊂ C, a lattice point α ∈ Z[

√
r] of distance < 1 to z since in this case d(z−α) = |z−α|2 < 1.

Every z ∈ C is inside a latticial rectangle with sides 1 and
√
d and therefore any z inside this rectangle is

at most as far away from a vertex as half the diagonal. Therefore we require that
√

1 + |r|/2 < 1, i.e., that
|r| < 3.

Proposition 1.6. Suppose r < 0 and r ≡ 1 mod 4. Then Z[ 1+
√
r

2 ] has d(x) as a Euclidean norm function
if and only if r = −3, −7, or −11.

Proof. The proof is the same as before but with a different lattice. Indeed, Z[
√
r] ⊂ Z[ 1+

√
r

2 ] and the RHS
lattice also has the centers of the rectangles in the LHS lattice. As in the previous proposition we seek for
each z ∈ C a lattice point at most distance 1 away from z, again because when r < 0 the norm function is
the square of the usual distance in C. Each z is in an isosceles triangle with base 1 and height

√
d

2 . In a
triangle with circumradius R each point in the interior is at most R distance from some vertex, and in this
case R = r+1

4
√
r
. Requiring R < 1 is equivalent to requiring r < (2 +

√
3)2 and the result follows.

We now turn our attention to the case r > 0. In this case Q(
√
r) ⊂ R and the norm function no longer

has a relation to any meaningful notion of distance. We will apply Lemma 1.3 to inquire when d(x) = |N(x)|
is a Euclidean function for Z[

√
r] for some positive r.

Proposition 1.7. Z[
√

7] is a Euclidean domain with Euclidean norm function d(x+
√

7y) = |x2 − 7y2|.

Proof. We will show that for each z = x+ y
√
r ∈ Q(

√
r) there exists a lattice point α = m+ n

√
r ∈ Z[

√
r]

such that d(z−α) < 1. We will represent z in the xy-plane via the linear map x+ y
√
r 7→ (x, y), which is an

isomorphism Q(
√
r) ∼= Q2. Under this isomorphism the lattice Z[

√
r] maps to the standard lattice Z2 ⊂ Q2.

The requirement that for each z there is an α such that d(z−α) < 1 is equivalent to the following: if we
denote Fα = {z | d(z − α) < 1} then

Q(
√
r) =

⋃
α∈Z[

√
r]

Fα.

As Z[
√
r] ∼= Z2 it suffices to check that the RHS covers the unit square [0, 1] × [0, 1]. What does Fα look

like? Clearly Fα = α+ F0 and F0 looks like:
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so it suffices to check that one unit square can be covered by such regions. See the Sage code for today’s
lecture to see that this can, indeed, be done for Q(

√
7).

Lecture 2
2018-01-19

(Thanks to Caitlyn Booms for today’s notes.)
Our next example involves a PID which is not a Euclidean domain.

Proposition 1.8. The ring R = Z[ 1+
√
−19

2 ] is not a Euclidean Domain.

Proof. We begin with a few facts, whose proofs we’ll see later in the course.

(i) R is a PID

(ii) R× = {±1}

(iii) 2 and 3 are irreducible elements in R.

Suppose that R admits a Euclidean Function d(x). Then choose a 6= 0, a /∈ R× such that d(a) is minimal.
(For example, if R = Z and d(x) = |x|, then a = 2.)

Claim: For every α ∈ R, either a | α, or α ≡ unit mod a.
Proof of Claim: Use division with remainder to write α = qa+r for some q, r ∈ R such that d(r) < d(a).

Then the minimality of d(a) implies that (r) is not a proper ideal. This gives two cases: if (r) = 0, then
a | α, otherwise if (r) = R, then α ≡ unit mod a.

Now, consider α = 2, 3. By the claim and (ii) above, we have that α ≡ 0,±1 mod a. Then 2 ≡ −1, 0, 1
mod a implies that a | 3, 2, 1 (but a can’t divide 1 since a is not a unit). Similarly, 3 ≡ −1, 0, 1 mod a
implies that a | 4, 3, 2. Since 2 and 3 are irreducible by (iii), we have that a | 2 or a | 3. Thus, a = ±2 or
a = ±3 as R, being a PID, is a UFD. Additionally, if we let α = 1+

√
−19

2 ∈ R, we again have α ≡ −1, 0, 1

mod a which implies that a | 1+
√
−19

2 − 1, 1+
√
−19

2 , 1+
√
−19

2 + 1. This is a contradiction because 2 and 3 do
not divide any of these numbers. Therefore, R is not a Euclidean Domain.

Example 1.9. Z[ 1+
√

69
2 ] is a Euclidean Domain, but it is not a norm Euclidean Domain.

Theorem 1.10 (Weinberger, assuming the Generalized Riemann Hypothesis). Let R be the ring of integers
of a finite field extension K/Q. If R is a PID and |R×| is infinite, then R is a Euclidean Domain.

Remark 1. Once we show the Dirichlet unit theorem later in the semester we will be able to show that if R
is the ring of integers of a number field then |R×| <∞ if and only if R = Z or R ⊂ Q(

√
r) with r < 0.

We now recall two important results from algebra, and suggest how we will adapt their proofs to obtain
Dedekind’s theory of unique factorization in Dedekind domains.
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Proposition 1.11. If R is a Euclidean Domain, then R is a PID.

Proof. Let I be an ideal of R and let a ∈ I be such that d(a) > 0 is minimal, where d is a Euclidean Function
for R. Then I = (a), and thus R is a PID.

Example 1.12. Z[
√
−5] is not a PID as it is not a UFD. For example, 6 ∈ Z[

√
−5] can be factored as both

6 = 2 · 3 and 6 = (1 +
√
−5) · (1−

√
−5).

Proposition 1.13. If R is a PID, then R is a UFD, i.e. every a 6= 0 in R can be written uniquely up to
units and permutations as a = unit · p1 · · · pr with each pi prime.

Proof. First, we show the existence of such a factorization. To do so, we need to give an algorithm to
factorize an element and show that this algorithm always terminates. Pick a 6= 0 that is not a unit. Then
(a) ( R. Zorn’s Lemma implies that (a) is contained in some maximal ideal m. Since R is a PID, m is
principal, and in a PID an element is prime if and only if it is irreducible, we must have m = (p1) for some
prime p1. Then (a) ⊂ (p1) gives that a = a1 · p1. Now repeat this process with a1 to get a1 = a2 · p2 with p2

prime. Continuing this process gives the following ascending chain of ideals in R, (a) ⊂ (a1) ⊂ (a2) ⊂ · · · .

Then I =

∞⋃
i=1

(ai) is an ideal of R and so must be principle, i.e. I = (b) for some b ∈ R. Let (an) be the first

ideal in the ascending chain that contains b. Then we have that I = (b) = (an) = (an+1) = · · · , so the chain
stabilizes and our algorithm terminates after n steps.
Remark 2. The key property that we used here is that every ideal of R is generated by a single element,
which implies that ascending chains of ideals stabilize. More generally, we will use that every ideal of a
Dedekind domain is finitely generated (i.e., that Dedekind domains are Noetherian rings). In fact, rings of
integers are generated by only two elements.

Next, we show uniqueness of this factorization. Suppose a 6= 0 has two factorizations:

a = u · p1 · · · pr = v · q1 · · · qs.

We want to show that {p1, . . . , pr} = {q1, . . . , qs}. We prove this by induction on r+ s. Since p1 divides the
righthand side of the above equation, it must divide some qi. Say p1 | q1. Then p1 = unit · q1, and we can
now cancel p1 on both sides of the equation. Then we have r − 1 + s − 1 < r + s, so we use the induction
hypothesis.
Remark 3. The key properties used here are

1. p | q1 · · · qs implies that p | qi for some i, and

2. we can divide by p1 on both sides.

More generally, we’ll show that if R is a ring of integers, then every ideal I of R can be written uniquely up
to permutations as I = p1 · · · pr where each pi is a prime ideal. For example, in Z[

√
−5], we have

6 = 2 · 3 = (2, 1 +
√
−5) · (2, 1−

√
−5) · (3, 1 +

√
−5) · (3, 1−

√
−5)

6 = (1 +
√
−5) · (1−

√
−5) = (2, 1 +

√
−5) · (3, 1 +

√
−5) · (2, 1−

√
−5) · (3, 1−

√
−5).

In the general case of Dedekind domains the two properties we used in this theorem will be replaced by

1. If I is an ideal containing a product of prime ideals p1 · · · pk then I contains some ideal pi, and

2. we need to make sense of “inverting a prime ideal”. We will do this by developing a theory of fractional
ideals where inversion is a natural operation.

Example 1.14. Z[x] is a UFD, but it is not a PID.

Lecture 3
2018-01-22
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2 Fields and rings of integers

2.1 Number fields
(2.1.1) A field K is a ring such that K − {0} = K× is the group of invertible elements. If L/K is a
finite extension of fields (i.e., L ⊃ K) then [L : K] = dimK L. If M/L/K are finite extensions then
[M : K] = [M : L][L : K].

(2.1.2) An element α is said to be algebraic over K is P (α) = 0 for some monic P ∈ K[X]. For α algebraic
the field K(α) is the minimal field containing both K and α. Every algebraic α has a minimal polynomial,
monic in K[X] obtained as the generator of the (proper) principal ideal in the PID K[X] consisting of all
polynomials which vanish at α, in which case [K(α) : K] equals the degree of this minimal polynomial.

Definition 2.1. A number field is defined to be a finite extension of Q.

For any finite extension L/K of fields of characteristic 0 or of finite fields there exists a so-called primitive
element α ∈ L such that L = K(α).

E.g., every quadratic extension L/K, by the quadratic formula, is of the form L = K(
√
α) for some

α ∈ K.

(2.1.3) An extension L/K is said to be algebraic if every element of L is algebraic over K.

Fact 1. An element α is algebraic over K if and only if K(α)/K is an algebraic extension if and only if
K(α)/K is a finite extension.

As an application we present:

Corollary 2.2. If α is algebraic of degree d then

K(α) = K[α] = {a0 + a1α+ · · ·+ ad−1α
d−1|ai ∈ K}

Proof. The map K[X]→ K[α] given by evaluating a polynomial at α is a ring sujection with kernel (P (X))
where P is the minimal polynomial of α over K. Therefore K[X]/(P (X)) ∼= K[α]. But P has to be
irreducible so (P (X)) is a maximal ideal and therefore K[α] is a field, thus also equal to K(α).

Every field K has an algebraic closure K which is algebraically closed. If L is any algebraically closed
field (such as C) containing K then there is a unique algebraic closure K ⊂ L consisting of all the elements
of L which are algebraic over K. This is how we will think of Q as the closure of Q in C.

(2.1.4) Embeddings. A number field K/Q can sit inside Q ⊂ C in more than one way. For example,
Q(i)→ C given by a+ bi 7→ a± bi provides two distinct embeddings (i.e., injective homomorphisms) of fields
which invary Q.

Fact 2. If α is algebraic with minimal polynomial f(X) over K then the embeddings of K(α) into K which
fix K are parametrized by the roots of f(X). If β is any root the associated embedding fixes K and takes
α to β. This produces a unique isomorphism K(α) ∼= K(β).

Theorem 2.3. If L/K is finite there are exactly [L : K] embeddings L→ K fixing K.
IfM/L/K are finite extensions and αi are the embeddings of L into K fixing K and τj are the embeddings

of M into L = K fixing L then the embeddings of M into K fixing K are σiτj.

Lecture 4
2018-01-24
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2.2 Number Rings
(2.2.1)

Definition 2.4. An algebraic integer is an element α satisfying P (α) = 0 for some monic P ∈ Z[X]. For a
number field K we write OK for the set of algebraic integers in K.

Recall Gauss’ lemma that if P ∈ Z[X] is monic and irreducible in Z[X] then P is irreducible in Q[X].

(2.2.2)

Proposition 2.5. An element α is an algebraic integer if and only if Z[α] is a finite Z-module.

Proof. Done in class. See textbook Proposition 2.3.4

Corollary 2.6. If α, β are algebraic integers then α± β, α · β are algebraic integers.

Proof. Done in class. See textbook Proposition 2.3.5

The conclusion is that the set OK of algebraic integers in the number field K is in fact a ring.

(2.2.3) We have shown that for a number field K the algebraic integers OK form a ring.

Definition 2.7. An order is a subring O ⊂ OK such that OK/O is finite. The ring of integers is said to be
the maximal order.

Some examples later.

(2.2.4) Having shown that for a number field K the algebraic integers OK form a ring we should answer
some natural questions:

1. Is OK torsion-free? Of course, since K is.

2. Is OK a finite Z-module? We know that every Z[α] ⊂ OK is finite over Z and the question is whether
OK is generated by finitely many algebraic integers.

3. A finite Z-module is just a finitely generated abelian group and once we show that OK is finite over Z
and torsion-free we deduce that OK ∼= Zd for d = rank(OK). What is this rank?

4. Can we find generators for OK as a Z-module?

(2.2.5)

Example 2.8. If m is a square-free integer not equal to 1 then the ring of integers of Q(
√
m) is Z[

√
m]

when m ≡ 2, 3 (mod 4) and Z[ 1+
√
m

2 ] when m ≡ 1 (mod 4).

Proof. If a + b
√
m ∈ OK then the minimal polynomial X2 − 2aX + a2 − b2m ∈ Z[X] and so 2a = p ∈ Z.

Therefore p2 − (2b)2m ∈ 4Z and so (2b)2m is an integer. If 2b has a denominator, its square would divide
the square-free m and so it would have to be 1. Thus 2b = q ∈ Z.

We have p2 ≡ q2m (mod 4). If m ≡ 2, 3 (mod 4) then the only possibility is that p and q are both even
as the squares mod 4 are only 0 and 1. This implies that a, b ∈ Z and so OK = Z[

√
m].

Ifm ≡ 1 (mod 4) then p2 ≡ q2 (mod 4) and so p and q have the same parity is the only relevant condition.
Noting that 1+

√
m

2 has minimal polynomial X2 −X + 1−m
4 ∈ Z[X] we deduce that OK = Z[ 1+

√
m

2 ].

(2.2.6)

Example 2.9. We have seen above that the ring of integers in Q(
√

5) is Z[ 1+
√

5
2 ] which contains the ring

Z[
√

5]. The quotient has order 2 since any integral element times 2 will be in Z[
√

5] and so Z[
√

5] is an order
in the ring of integers.
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(2.2.7) This example leads to a brief exploration of the general setup. If A ⊂ B are integral domains then
α ∈ B is said to be integral over A if it is the root of a monic polynomial in A[X]. The integral closure
of A in B is the ring (!) of elements of B which are integral over A. (In this language OK is the integral
closure of Z in K.) The ring A is said to be integrally closed in B (or simply integrally closed when B is
taken to be FracA) if it is equal to its integral closure in B.

I gave examples in class in Sage (see the session outputs). For example we saw that Z[
√

5] was not
integrally closed in Q(

√
5) which we knew since the ring of integers is larger. Sage also gave us the integral

closure of Z[
√

5] (implicitly in its fraction field Q(
√

5) is the whole ring of integers.
That said, there is a geometric perspective on integral elements. Roughly speaking integrally closed

rings have few singularities (in codimension 2) and the farther you are from being integrally closed the more
singularities you introduce. Here is an explicitly geometric example: The ring B = C[t] is integrally closed
in its fraction field (true of all polynomial rings over fields) and geometrically this ring represents a line.
However, the ring A = C[t2, t3] ⊂ B = C[t] is not integrally closed because the element α = t is the root of
the minimal polynomial X2 − t2 ∈ A[X] but t /∈ A as t cannot equal a polynomial of higher degree. What
does A represent geometrically? Writing x = t2 and y = t3 produces the equation y2 = x3 and indeed A
represents this cuspidal cubic curve which has a singularity at the origin.

Lecture 5
2018-01-26

2.3 Trace and Norm
(2.3.1)

Definition 2.10. If L/K is a finite extension and σi are the embeddings of L into K fixing K write

TrL/K(x) =
∑

σi(x)

and
NL/K(x) =

∏
σi(x)

Fact 3. The maps TrL/K , NL/K have image in K. The trace map TrL/K : L → K has the properties that
TrL/K(x + y) = TrL/K(x) + TrL/K(y); if c ∈ K then TrL/K(cx) = cTrL/K(x); TrL/K(1) = [L : K]. The
norm map NL/K : L→ K has the property that NL/K(xy) = NL/K(x)NL/K(y).

See textbook §2.4.

Example 2.11. If K = Q(
√
m) then there are exactly two embeddings of K into Q fixing Q, namely

a+ b
√
m 7→ a± b

√
m. Thus TrK/Q(a+ b

√
m) = 2a and NK/Q(a+ b

√
m) = a2 − b2m.

(2.3.2)

Proposition 2.12. If L/K are number fields then TrL/K , NL/K : OL → OK .

Proof. If α is the root of the monic polynomial P ∈ Z[X] and σ is an embedding of L into K fixing K ⊃ Z
it follows that P (σ(α)) = σ(P (α)) = σ(0) = 0 and so σ(α) is also an algebraic integer. Thus TrL/K(α) and
NL/K(α) are algebraic integers in K and thus are elements of OK .

(2.3.3)

Proposition 2.13. If M/L/K are number fields then TrM/K = TrL/K ◦TrM/L and NM/K = NL/K ◦NM/L.

Proof. Done in class. See textbook Corollary 2.4.4.

(2.3.4) The trace pairing. Define (·, ·)L/K : L× L→ K by (x, y)L/K = TrL/K(xy). It is a K-bilinear form.

Proposition 2.14. The trace pairing is nondegenerate, i.e., if (x, y) = 0 for all y then x = 0.
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Proof. Too short to give reference. If x 6= 0 then (x, x−1)L/K = TrL/K(1) = [L : K] 6= 0 as number fields
have characteristic 0.

(2.3.5) Discriminants.

Definition 2.15. Suppose L/K is a finite extension of fields. If α1, . . . , αn ∈ L define

discL/K(α1, . . . , αn) = det((αi, αj)L/K)i,j ∈ K

Proposition 2.16. Suppose [L : K] = n. Then

1. discL/K(α1, . . . , αn) = det(σi(αj))
2
i,j where σ1, . . . , σn are the embeddings L→ K fixing K.

2. discL/K(α1, . . . , αn) 6= 0 if and only if α1, . . . , αn form a basis of L/K.

3. If αi ∈ OL then discL/K(α1, . . . , αn) ∈ OK .

Proof. Done in class. For part (i) see textbook the first paragraph of §6.2. Part (ii) follows from the fact that
the trace pairing is nondegenerate, again at the beginning of §6.2 in the textbook. Finally, if αi ∈ OL then
(αi, αj)L/K ∈ OK and so the discriminant is in OK since it is the determinant of a matrix with coefficients
in OK .

(2.3.6) Integral bases. First, recollections on finitely generated abelian groups. If A is a finitely generated
abelian group then

A ∼= Zd ⊕
⊕

Z/niZ

and d = rank(A) is the rank of A. If B is a finitely generated abelian group and A ⊂ B is a subgroup then
A is also finitely generated and rank(A) ≤ rank(B).

Theorem 2.17. Let K be a number field. The following statements are all equivalent and true:

1. OK is a finite Z-module of rank [K : Q].

2. OK ⊂ K is a full lattice.

3. OK = Zα1 + Zα2 + · · · + Zαn where n = [K : Q]. In that case α1, . . . , αn is said to be an integral
basis.

Proof. Part (ii) is by definition the same as part (i) while part (iii) is part (i) by the theory of finitely
generated abelian groups. We will prove part (i).

Pick any basis β1, . . . , βn of K/Q. Since for any x ∈ K there exists m ∈ Z such that xn ∈ OK (if
dkx

k + dk−1x
k−1 + · · · = 0 then (dkx)k + dk−1(dkx)k−1 + dk−2dk(dkx)k−2 + · · · = 0 and so dkx ∈ OK) we

may rescale the βi such that βi ∈ OK .
Suppose α =

∑
riβi with ri ∈ Q. Then (α, βj)K/Q =

∑
ri(βi, βj)K/Q which can be rewritten as a matrix

multiplication ((βi, βj)K/Q)i,j(ri) = ((α, βi)K/Q). Solving using Cramer’s rule shows that ri is a ratio of a
determinant of a matrix with coefficients in OQ = Z by det((βi, βj)K/Q)i,j = D = discK/Q(β1, . . . , βn). Thus
ri ∈ 1

DZ which implies that

OK ⊂
∑ βi

D
Z

and so OK is a finitely generated abelian group with rank(OK) ≤ [K : Q]. But at the same time∑
Zβi ⊂ OK

and so n ≤ rank(OK) and the theorem follows.

(2.3.7) Discriminant of a number field.
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Definition 2.18. Suppose K is a number field and α1, . . . , αn is an integral basis of OK/Z. Define

disc(K) = disc(OK) = discK/Q(α1, . . . , αn)

Note that if β1, . . . , βn is another integral basis then there exists a matrix B ∈ GL(n,Z) such that
(βi) = B(αi) and so

disc(βi) = det(B)2 disc(αi)

Since detB = ±1 ∈ Z× it follows that the above definition is independent of the chosen integral basis.

Example 2.19. 1. The discriminant of Q(
√
m) is 4m if m ≡ 2, 3 (mod 4) and m if m ≡ 1 (mod 4).

2. If m ≡ 1 (mod 9) then the discriminant of Q( 3
√
m) (see the first problem set for the ring of integers)

is −3m2. Also, see the Sage page on the website for Sage code proving this fact.

(2.3.8)

Proposition 2.20. Let p > 2 be prime. Then the ring of integers of Q(ζp) is Z[ζp]. In fact for any positive
integer n the ring of integers of Q(ζn) is Z[ζn].

Proof. Only did in class the case of p prime. First, note that Z[ζp] = Z[1− ζp] as a basis of the LHS over Z
is 1, ζp, . . . , ζp−2 while of the RHS is 1, 1 − ζp, (1 − ζp)2, . . . , (1 − ζp)p−2 and it’s clear one can go from the
LHS basis to the RHS basis using a lower-triangular matrix with 1-s on the diagonal. This matrix is then
invertible in GL(p− 1,Z) and so the two bases are equivalent.

From one of the problems on problem set 1 you computed that (K = Q(ζp))

discK/Q(1, ζp, . . . , ζ
p−2
p ) = (−1)(p−1)/2pp−2

But this discriminant (as shown in class) is independent of a Z-basis and so it is also equal to D =
discK/Q(1, 1− ζp, (1− ζp)2, . . . , (1− ζp)p−2).

We have show in class that if α = a0 + a1(1− ζp) + · · ·+ ap−2(1− ζp)p−2 ∈ OK then Dai ∈ Z and so we
may write

α =
m0 +m1(1− ζp) + · · ·+mp−2(1− ζp)p−2

pp−2
∈ OK

If α /∈ Z[ζp] = Z[1− ζp] then the coefficients mi are not all divisible by pp−2. In fact we may cancel out any
common factor of p among the mi and write

α =
m0 +m1(1− ζp) + · · ·+mp−2(1− ζp)p−2

pk

where not all m0 are divisible by p and k ≤ p− 2. Let i be the smallest index such that p - mi. Then

β = pa−1α− m0 +m1(1− ζp) + · · ·+mi−1(1− ζp)i−1

p
=
mi(1− ζp)i + · · ·+mp−2(1− ζp)p−2

p

is also in OK since Z[ζp] ⊂ OK .
Note that NK/Q(1−ζp) = (1−ζp)(1−ζ2

p) · · · (1−ζp−1
p ) = 1p−1 +1p−2 + · · ·+1+1 = p. Since 1−ζp | 1−ζip

(here a | b means b/a ∈ OK) it follows that (1− ζp)p−1 | p. Now

pβ = mi(1− ζp)i + · · ·+mp−2(1− ζp)p−2

in OK . If i < p − 2 then note that (1 − ζp)i+1 | (1 − ζp)p−2 | p and so we deduce that 1 − ζp | mi. But
1 − ζp | p and since p - mi it follows that we can find u, v ∈ Z such that mia + pb = 1 which would imply
that 1− ζp | 1. But then 1/(1− ζp) ∈ OK which is impossible because then NK/Q(1/(1− ζp)) = 1/p would
be an integer. Thus we get a contradiction. If i = p− 2 then pβ = mp−2(1− ζp)p−2 which would imply that
1− ζp | mp−2 yielding a contradiction as before.

The conclusion is that OK = Z[ζp] as desired.

Lecture 6
2018-01-29
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3 Dedekind domains

3.1 Noetherian rings
(3.1.1)

Definition 3.1. A ring R is said to be noetherian if every increasing chain of ideals I1 ⊂ I2 ⊂ . . . stabilizes,
i.e., In = In+1 = · · · for n >> 0. A moduleM/R is noetherian if every chain ofR-submodulesM1 ⊂M2 ⊂ . . .
stabilizes.

Example 3.2. Z, F [X] are noetherian because ideals are principal. The ring Z is not noetherian because
(2) ⊂ (21/2) ⊂ (21/4) ⊂ . . . doesn’t stabilize.

Fact 4 (Some facts from commutative algebra). 1. Quotients of noetherian rings are noetherian.

2. (Hilbert basis theorem) If R is noetherian then R[X1, . . . , Xn] is noetherian.

3. The noetherian modules over a noetherian ring are precisely the finitely generated ones.

3.2 Unique factorization in Dedekind domains
(3.2.1)

Definition 3.3. An integral domain R is said to be a Dedekind domain if

1. R is noetherian

2. R is integrally closed (i.e., in its fraction field K)

3. Every prime ideal of R is maximal.

Example 3.4. Z and Fp[X] are Dedekind domains. The algebraic integers Z is not because it is not
noetherian. The ring Z[

√
5] is not because it is not integrally closed. The ring Z[X] is noetherian and

integrally closed but the prime ideal (X) is not maximal because Z[X]/(X) ∼= Z is an integral domain which
is not a field. Thus Z[X] is not a Dedekind domain. Finally, (x) is a prime ideal in C[x, y] which is not a
maximal ideal.

(3.2.2)

Theorem 3.5. If K/Q is a number field then OK is a Dedekind domain.

Proof. Done in class. See textbook Proposition 3.1.5. The noetherian property follows from Z[α1, . . . , αn]→
→ OK for any integral basis (αi).

Lecture 7
2018-01-31

Remark 4. The main use of the noetherian condition is the following. Suppose P is a set of ideals (defined,
say, by having a certain property). If R is noetherian then every ideal in P is contained in an ideal in P
which is maximal in P, i.e., it is not contained in any bigger ideal in P. Indeed, if I1 ⊂ I2 ⊂ . . . is a chain of
ideals in P then it stabilizes and the “limit” is necessarily in P. Thus Zorn’s lemma implies that every ideal
is contained in an ideal of P which is maximal. We will use this many times.

(3.2.3)

Definition 3.6. If R is an integral domain and K is its fraction field, a fractional ideal of R is a finitely
generated R-submodule of K.

11



Note that finite generation implies that if I is a fractional ideal then there exists α ∈ R such that αI ⊂ R,
i.e., is an ideal of R.

Example 3.7. m
n Z is a fractional ideal of Z. Similarly P (X)

Q(X)F [X] is a fractional ideal of F [X] where F is
any field.

Definition 3.8. We define a multiplication law on fractional ideals given by IJ = {
∑
xiyi|xi ∈ I, yi ∈ J}.

Note that IR = I for every fractional ideal I of R. With respect to this multiplication and unit a fractional
ideal I is invertible if there exists a fractional ideal I−1 such that II−1 = R.

For example (mn Z)−1 = n
mZ.

(3.2.4) Fractional ideals.

Definition 3.9. Let R be a ring and I, J two ideals. Say that I | J if J ⊂ I.

Lemma 3.10. Let R be a noetherian ring. Then every ideal I of R divides a product of prime ideals.

Proof. Done in class. See textbook Lemma 3.1.10 which really only uses the noetherian property.

Theorem 3.11. If R is a Dedekind domain then every fractional ideal is invertible, i.e., the set of fractional
ideals is a group.

Proof. I did this in three steps.
Step 1: We do this for I = p a prime ideal of R.
Step 2: Do this for I an ideal of R.
Step 3: Do this for I a fractional ideal of R. This last step is easy, since there exists α ∈ R nonzero

such that αI is an ideal. Then αI is invertible and I−1 = α(αI)−1.
Steps 1 and 2 are done in the textbook, proof of Theorem 3.1.8 on page 45 where it’s phrased only for

rings of integers of number fields but the proof is identical in the case of Dedekind domains.

A feature of the proof of the above theorem: If
∏

pi ⊂ pp where p and pi are prime ideals then p = pi
for some i.

Lecture 8
2018-02-02

(3.2.5) We are ready for unique factorization in Dedekind domains. For clarity, start with a lemma.

Lemma 3.12. Suppose R is a Dedekind domain and I, J are fractional ideals. If I = IJ then J ⊂ R.

Proof. We already did this implicitly in the prood of the fact that every ideal is invertible. Here is a sketch:
The fractional ideal I is finitely generated over Z and so I = ⊕Zαi for some αi. If x ∈ J then x acting

by multiplication on I (since I = IJ) has xαi =
∑
mijαj and so multiplication by x on I is the same

as multiplication on ⊕Zαi by the matrix (mij) ∈ Mn×n(Z). Multiplication by x thus satisfies, by Cayley-
Hamilton, the characteristic polynomial of (mij) which is monic in Z[X] and so x will be integral over Z.
But R is integrally closed and so x ∈ R. Thus J ⊂ R.

Theorem 3.13. Suppose R is a Dedekind domain. Then every fractional ideal I can be written uniquely
(up to permutations) as a product

∏
i p
ni
i where ni ∈ Z and pi are prime ideals.

Proof. This is textbook Theorem 3.1.11
First, note that the case of fractional ideals can be reduced to that of ideals by multiplication. Next, if∏
pi =

∏
qj then

∏
pi ⊂ qj for each j. Thus by the observation at the end of the previous lecture it follows

that pi = qj for some i. Multiplying
∏

pi =
∏

qj by the inverse of pi = qj yields an equality of products
of prime ideals containing fewer factors in each product. Repeating the argument proves the fact that the
prime ideals pi and qj are permutations of each other.

12



For existence, if not every ideal is a product of primes ideals then there exists a maximal I which is not
a product of prime ideals by the noetherian property. The trivial ideal R is a trivial product of primes and
so I ⊂ p ⊂ R where p is some prime ideal (every ideal is contained in a maximal ideal!) Therefore p | I and
so Ip−1 ⊂ R is an ideal. If I = Ip−1 then the above lemma implies that p−1 ⊂ R and of course this would
imply that R ⊂ p which is false. Thus I ( Ip−1 and by maximality of I it follows that Ip−1 is invertible
and I−1 = p−1(Ip−1)−1.

Lecture 9
2018-02-05

(3.2.6) The Chinese Remainder Theorem.

Proposition 3.14. 1. Suppose ni are pairwise coprime integers and ai ∈ Z. Then there exists a ∈ Z
such that a ≡ qi (mod ni). Equivalently,

Z/
∏

niZ ∼=
∏

Z/niZ

2. If R is any commutative ring with unit and Ii are pairwise coprime ideals of R (i.e., if i 6= j then
Ii + Ij = R), then

R/
∏

Ii ∼=
∏

R/Ii

Proof. Done in class, see textbook §5.1.1

(3.2.7) Generators for fractional ideals in Dedekind domains.

Lemma 3.15. Suppose R is a Dedekind domain and I, J are two ideals. Then there exists a ∈ I such that
(a)I−1 and J are coprime.

Proof. Done in class, see textbook Lemma 5.2.2.

Theorem 3.16. If R is a Dedekind domain then every fractional ideal is generated by 2 elements.

Proof. It suffices to show this for ideals since fractional ideals are scalar multiples of ideals. Suppose a ∈ I
is nonzero. Then the lemma above implies the existence of b ∈ I such that (b)I−1 and (a) are coprime. Now
a, b ∈ I and so (a, b) ⊂ I where (a, b) = (a) + (b) is the ideal generated by (a) and (b). Thus I | (a, b).
If pn | (a, b) | (a), (b) it follows that pn | (a) and pn | (b). The ideals (a) and (b)I−1 are coprime and so
p - (b)I−1. Thus the power of p in (b) equals the power of p in I and so pn | I. Thus (a, b) | I and we
conclude that I = (a, b) is generated by two elements.

Lecture 10
2018-02-07

4 Ideals in number fields

4.1 Norms of ideals
(4.1.1)

Definition 4.1. If K is a number field and I is a fractional ideal define ||I|| = [OK : I].

Example 4.2. Say K = Q(
√
−23) and I = (2, (−1 +

√
−23)/2). Then OK is generated as a module

over Z by 1 and (1 +
√
−23)/2 and so I as a Z-module is generated by 2, 1 +

√
−23, (−1 +

√
−23)/2 and

(
√
−23 + 23)/2. Playing with generator you see that I is generated over Z by 2 and (−1 +

√
−23)/2 and so

the diagonal matrix (2, 1) takes OK to I (with respect to the basis 1, (−1 +
√
−23)/2 of K over Q) and so

||I|| = 2.

13



(4.1.2) If L ⊂ Rn is a full rank lattice with integral basis v1, . . . , vn then

vol(Rn/L) = |det(v1, . . . , vn)|.

As a result, if L ⊂ L′ ⊂ Rn are rank n lattices then

[L′ : L] =
vol(Rn/L)

vol(Rn/L′)

can be computed using linear algebra.

(4.1.3) To apply this perspective to ideals we need a good vector space to work with. Let K be a number
field with r real embeddings σ1, . . . , σr and s pairs of complex embeddings τ1, τ1, . . . , τs, τs, with r + 2s =
n = [K : Q]. Together they define an embedding ι : K ↪→ Rn by:

ι(x) = (σ1(x), . . . , σr(x),Re τ1(x), Im τ1(x), . . . ,Re τs(x), Im τs(x)).

Lemma 4.3. Let K be a If I is an ideal of OK then

||I|| = vol(Rn/ι(I))

vol(Rn/ι(OK))
,

where vol(Rn/ι(OK)) = 2−s
√
|dK |.

Proof. I did this in class. See the textbook Lemma 7.1.7. For the second part the idea is that is e1, . . . , en
is an integral basis of OK over Z then

vol(Rn/ι(OK)) = |det(σ1(ej), . . . , σr(ej),Reσr+1(ei), Imσr+1(ei), . . .)|
= 2−s det(σ1(ej), . . . , σr(ej), σr+1(ei), σr+1(ei), . . .)

= 2−s
√
|disc(K)|

since the discriminant is the square of the matrix of embeddings.

Proposition 4.4. Suppose K is a number field.

1. If a ∈ K then ||(a)|| = |NK/Q(a)|.

2. If p is a prime ideal of OK and kp = OK/p is the residue field then dimkp p
m/pm+1 = 1 and therefore

|OK/pm| = |kp|m.

3. If I and J are fractional ideals of K then ||IJ || = ||I||||J ||.

Proof. Done in class. For (1) see textbook Lemma 6.3.3.. In class I used the previous lemma. For the first
part of (2) see textbook Proposition 5.2.4. For the second part, note that in the filtration OK/pn ⊃ p/pn ⊃
. . . ⊃ pn−1/pn each successive quotient is pi/pi+1 ∼= kp. Thus |OK/pn| =

∏n−1
i=0 |pi/pi+1| = |kp|n.

Part (3) is textbook Proposition 6.3.4.

Lecture 11
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4.2 The class group
Definition 4.5. Let K be a number field. We already know that the fractional ideals of K from a group.
The class group Cl(K) of K is the quotient of the group of fractional ideals by the (normal) subgroup of
principal fractional ideals. If K is a number field then the class number is hK = |Cl(K)|.
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From the definition OK is a PID if and only if Cl(K) = 1 iff hK = 1.

Proposition 4.6. The set of ideals {I | ||I|| ≤ X} is finite. Moreover, if p is a prime ideal with ||p|| = pk

where kp = Fpk then p | (p)OK .

Proof. Done in class. By unique factorization is suffices to show the second part of the statement. Since kp
has characteristic p it follows that p = 0 in OK/p and so p ∈ p which implies p | (p)OK . The set of ideals I
with ||I|| ≤ X is then a product of the finitely many prime ideals showing up in the factorization of prime
numbers ≤ X, the exponents being at most log2(X).

Theorem 4.7. Let K be a number field.

1. Suppose there exists λ > 0 such that for every fractional ideal I there exists α ∈ I with |NK/Q(α)| ≤
λ||I||. Then Cl(K) is finite and is generated by prime ideals dividing (n)OK for n ≤ λ.

2. Such a λ exists. Indeed if α1, . . . , αn is an integral basis of K then one can take

λ =
∏

σ:K↪→C

∑
i

|σ(αi)|.

Proof. Part one: First note that if the assumption is satisfied by ideals then it is also satisfied by fractional
ideals because we proved before that ||(a)I|| = |NK/Q(a)|||I|| and some multiple of a fractional ideal is an
ideal.

Let I be any fractional ideal and let α ∈ I−1 be such that |NK/Q(α)| ≤ λ||I−1||. Then J = (α)I ⊂
I−1I = OK has the property that ||J || = |NK/Q(α)|||I|| ≤ λ||I−1||||I|| = λ. Denoting [I] the image of the
fractional ideal I in Cl(K) it follows that some ideal J ∈ [I] has the property that ||J || ≤ λ.

The finiteness of Cl(K) is immediate from the previous Proposition.
Part two: Let α1, . . . , αn be an integral basis of OK and σ1, . . . , σn : K ↪→ Q be the embeddings fixing Q.

Then λ =
∏
i

∑
j |σi(αj)| will work. Indeed, let m = b n

√
||I||c. The set {

∑n
j=1mjαj |0 ≤ mi ≤ m} ⊂ OK has

(m+ 1)n > ||I|| elements and so at least two elements must be congruent mod I. Let α be the difference
of these two elements in which case α =

∑
kjαj with −m ≤ ki ≤ m and α ∈ I. But then

|NK/Q(α)| =
∏
i

|σi(
∑

kjαj)|

≤
∏
i

∑
j

|kj ||σi(αj)|

≤ mnλ

≤ λ||I||

Remark 5. The explicit value of λ obtained above is effective in that for every K it can be computed but it
is inefficient in that it’s value can be large.

(4.2.1) We’d like a better constant λ in the previous Theorem. To do this, we use a better pigeonhole
principle.

Lemma 4.8. Suppose Λ ⊂ Rn is a lattice with fundamental volume vol(Λ) := vol(Rn/Λ). Suppose E is a
convex region of Rn which is symmetric around the origin. If vol(E) > 2n vol(Λ) then E contains a nonzero
element of Λ in its interior.

Proof. Let F be a fundamental parallelotope of Λ, i.e., the locus {
∑
xivi|xi ∈ [0, 1]} for v1, . . . , vn a basis of

Λ. Then vol(F ) = vol(Rn/Λ). Since 1
2E =

⊔
v∈Λ

1
2E ∩ (v+F ) (as translates of F cover Rn). Thus (the first
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inequality is the hypothesis)

vol(F ) < 2−n vol(E)

= vol(
1

2
E)

=
∑
v∈Λ

vol(
1

2
E ∩ (v + F ))

=
∑
v∈Λ

vol(
1

2
E − v ∩ F )

This implies that at least two of the sets 1
2E−v∩F for v ∈ Λ must overlap. Thus we find x−u = y−v in F

with x, y ∈ 1
2E and u, v ∈ Λ. As E is symmetric around the origin and convex it follows that the difference

x− y ∈ E but x− y = u− v and so u− v ∈ E ∩ (Λ− {0}) as desired.

Lecture 12
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(4.2.2) Optimizing the constant λ.
Recall that we seek elements α in ideals I with a bound on their norms. The insight of Minkowski’s

geometry of numbers is that I, being a finite Z-module, is a lattice and so we seek points in a lattice with a
certain property. The “idea” of the geometry of numbers is that if Λ is a lattice in RN then a convex region
of RN should have roughly as many lattice points as the volume of the region, normalized so that the “unit
cube” of the lattice has volume 1. This makes intuitive sense in the plane (one can approximate, poorly, π
by computing the number of lattice points in circles of big radii) and the previous Lemma formalizes this
intuition.

We will use the embedding ι : K ↪→ Rn from before. Writing (x1, . . . , xr, y1, z1, . . . , ys, zs) ∈ Rn we define

N(xi, yj , zj) =
∏

xi
∏

(y2
j + z2

j ).

Note that if x ∈ K then N(ι(x)) = NK/Q(x).
Since we seek α ∈ I − 0 with |NK/Q(α)| ≤ λ||I|| why not simply see α ∈ ι(I) − 0 such that |N(α)| ≤

λ||I||, i.e., defining Eλ = {v ∈ Rn | |N(v)| ≤ λ||I||} why not apply the previous lemma to Eλ to show
Eλ ∩ (ι(I)− 0) 6= ∅? The reason is that Eλ is not convex.

The previously chosen inefficient value of λ was obtained by, essentially, applying the previous lemma to
the parallelepiped

B = {
∑

uiαi | |ui| ≤ n
√
||I||}.

This box, however, is much too small compared to the region Eλ for the same λ. This means that to ensure
that B ∩ ι(B)− 0 is not empty we need to make λ larger than it should be. For comparison, here are Eλ and
B when K = Q(

√
7).
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Instead, we will focus on an intermediary region Eλ, shaded green in the above diagram. It is convex,
symmetric with respect to 0, and it’s larger than B which means we can afford to keep λ smaller and still
guarantee that Eλ contains a point in ι(I)− 0.

Define
Eλ = {(xi, yj , zj) |

∑
|xi|+ 2

∑√
y2
j + z2

j ≤ n
n
√
λ||I||}.

Then Eλ is convex, symmetrix with respect to the origin, and by the homework exercise due next Friday, its
volume is

vol(Eλ) =
2r−sπsnnλ||I||

n!
.

Moreover, by the AM-GM inequality it follows that Eλ ⊂ Eλ.

Theorem 4.9. If K is a number field with r real and 2s complex embeddings then we may choose

λ =
n!

nn

(
4

π

)s√
|disc(K)|

Proof. It suffices to show that Eλ ∩ ι(I) − 0 6= ∅, and for this it’s enough to check that vol(Eλ) ≥
2n vol(Rn/ι(I)). In the pigeonhole principle lemma it was necessary to show that vol(Eλ) > 2n vol(Rn/ι(I)),
but replacing Eλ by (1 + ε)Eλ as ε→ 0 implies that (1 + ε)Eλ ∩ ι(I)− 0 6= ∅. Since ι(I) is a lattice it will
contain finitely many point in 2Eλ and if none of them are inside or on the boundary of Eλ we could find
ε > 0 small enough such that (1 + ε)Eλ doesn’t contain any of the finitely many such points.

The result now follows from

vol(Eλ) =
2r−sπsnn||I||

n!

n!

nn

(
4

π

)s√
|disc(K)|

= 2r+s||I||
√
|disc(K)|

and

vol(I) = vol(Rn/ι(I))

= [OK : I] vol(Rn/ι(OK))

= ||I||2−s
√
|disc(K)|

recalling that vol(Rn/ι(OK)) = 2−s
√
|disc(K)|.

Corollary 4.10. If K is a number field with 2s complex embeddings then

|disc(K)| ≥ nn

n!

(π
4

)s
In particular if K 6= Q then K/Q ramifies at some prime.

Proof. The inequality follows from the fact that the Minkowski bound ≥ 1 or else we would get no ideals at
all. If n = [K : Q] ≥ 2 then the RHS in the inequality is ≥ 2 and we know that K/Q ramifies at primes
dividing the nonunit discriminant.

(4.2.3) Computing class groups.

Example 4.11. The class group of K = Q(
√
−21) is Cl(K) ∼= Z/2Z× Z/2Z.
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Proof. Computing the Minkowski bound for K gives λ = 5.8 . . . and so to find the ideals J (representing the
classes in Cl(K)) with ||J || ≤ 5 it suffices to factor 2, 3, 5 in OK . Using the problem from the homework 3,
we factor x2 + 21 mod 2, 3, 5 and get (since disc(K) = −22 · 3 · 7)

(2)OK = (2, 1 +
√
−21)2

(3)OK = (3,
√
−21)2

(5)OK = (5, 2 +
√
−21)(5, 2−

√
−21)

Let q2 = (2, 1 +
√
−21), q3 = (3,

√
−21) and q5 = (5, 2 +

√
−21). We first check that they are not principal,

and only do it for the first ideal. Indeed, if q2 = (α) then |NK/Q(α)| = ||q2|| =
√
||(2)OK || = ||(2)Z|| = 2

but α = x+ y
√
−21 can never have norm 2 (or 3 or 5).

Next, it’s quick to see (play around with generators) that q2q3 = (6, 2
√
−21) which again is not principal

because it has norm 6 whereas x2 + 21y2 cannot be 6. Moreover, q2q3q5 = (6, 2
√
−21)(5, 2 +

√
−21) =

(30, 3−
√
−21) = (3−

√
−21) since NK/Q(3−

√
−21) = 30.

Let a, b, c be the images of q2, q3, q5 in Cl(K). Then a2 = b2 = 1 and abc = 1 and cc = 1. We know
that every class in Cl(K) has an ideal which is a product of prime ideals whose image in Cl(K) is a product
of powers of a, b, c. Since c = c−1 = ab it follows that the only possibilities are {1, a, b, ab} and the result
follows.

Lecture 13
2018-02-14

4.3 Units
(4.3.1) The purpose of this section is to prove the following theorem of Dirichlet:

Theorem 4.12 (Dirichlet unit theorem). Suppose K is a number field with r real and 2s complex embeddings.
Then O×K is a finitely generated abelian group of rank r + s− 1.

Remark 6. Note that α ∈ O×K iff NK/Q(α) = ±1.

Example 4.13. K = Q(
√
m) with m > 0. Then r = 2, s = 0 and the real quadratic field K has rank 1 unit

group. E.g., O×Q(
√

2)
= ±(2 +

√
3)Z.

Example 4.14. K = Q(
√
m) with m < 0. Then r = 0, s = 1 and the imaginary quadratic number field K

has finite unit group. E.g., O×Q(ζ3) = {±1,±ζ3,±ζ2
3}.

Example 4.15. K = Q( 3
√

2) has r = 1, s = 1 and so O×Q( 3√2)
has rank 1. It turns out O×Q( 3√2)

= ±( 3
√

2−1)Z.

Example 4.16. For a more complicated example, take K = Q(
√

3,
√

5). Then O×K has rank 3 and in fact

O×K = ±

(
1 +
√

5

2

)Z(
1 +
√

5

2
−
√

3

)Z(
1 +
√

5

2
−
√

3− 1

)Z

Example 4.17. K = Q(ζpn) for p a prime. Then K is a quadratic extension of the real subfield K+ =
Q(ζpn + ζ−1

pn ) = Q(cos(2π/pn)). All the embeddings of K+ are real and K = K+(i sin(2π/pn)) and so all
the pn−1(p − 1) embeddings of K are complex. Thus s = pn−1(p − 1)/2 but we can no longer describe the
s generators of O×K explicitly. However, we can say that O×K has a finite index subgroup generated (as a

group) by ζpn and ζ
1−a
2

pn
1− ζapn
1− ζpn

= ± sin(πa/pn)

sin(π/pn)
for 1 < a < pn/2 coprime to p.

Remark 7. If K/Q is Galois then either r = 0 or s = 0 as the Galois group acts transitively (and in fact can
be identified with) the set of embeddings into C.
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(4.3.2) To understand the class group of K we used the embedding ι : K → Rn taking OK to the lattice
Λ and we implicitly used that this embedding was additive. To study O×K we would like to transform the
unpleasant multiplicative on O×K to a much more usable additive structure on a vector space.

Consider the map log : Rn → Rr+s given by

log((x1, . . . , xr+2s)) = (log |x1|, . . . , log |xr|, log(x2
r+1 + x2

r+2), . . .)

and
∑

: Rr+s → R given by
∑

(x1, . . . , xr+s) = x1 + · · ·+ xr+s.

Lemma 4.18. 1. The composite map log ◦ι : K× → Rn is additive, i.e., log(ι(xy)) = log(ι(x))+log(ι(y)).

2. The image of O×K lies in a hyperplane: log(ι(O×K)) ⊂ ∆ where ∆ = {(x1, . . . , xr+s)|x1+· · ·+xr+s = 0}.

3. The additive subgroup log(ι(O×K)) ⊂ ∆ is a discrete abelian subgroup and thus a lattice of rank d ≤
rank(∆) = r + s− 1.

Lemma 4.19. Part one follows from the definition. Part two uses the fact that α ∈ O×K iff |NK/Q(α)| = 1
and

∑
log(ι(α)) = log |NK/Q(α)|. For part three: the preimage under log of any open subset of ∆ is an open

subset of Rn which contains finitely many ι(α) for α ∈ O×K as ι(OK) is a lattice in Rn.

(4.3.3) O×K vs log ι(O×K).

Proposition 4.20. The kernel of log ◦ι|OK−0 consists of the roots of unity in K and is finite. Thus O×K is
a finitely generated abelian group of the same rank as log ι(O×K).

Proof. If α ∈ OK − 0 has log ι(α) = 0 then |σ(α)| = 1 for all embeddings σ : K ↪→ C. The minimal
polynomial of α is Pα(X) =

∏
(X − σ(α)) = Xn + an−1X

n−1 + · · ·+ a1X + a0 ∈ Z[X] and

|an−j | = |
∑

i1<...<ij

σi1(α) · · ·σij (α)| ≤
∑

i1<...<ij

1 =

(
n

j

)

and so Pα(X) is in the finite set F = {Xn +an−1X
n−1 + · · ·+a1X +a0 ∈ Z[X]||an−j ≤

(
n
j

)
}. But the same

is true of Pαk for all k since the Galois conjugates of αk are αki . Thus Pαk is in the same set. Since there are
infinitely many choices for k it follows that αk = αk

′
for at least two k 6= k′ and thus α is a root of unity.

If ζn ∈ K then Q(ζn) ⊂ K and so ϕ(n) = [Q(ζn) : Q] ≤ [K : Q] which puts a bound on n and so K
contains finitely many roots of unity.

Therefore log ι(O×K) ∼= O×K/µ(K) where µ(K) is the finite group of roots of unity in K and the conclusion
follows.

Lecture 14
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(4.3.4) Proof of the Dirichlet unit theorem.

Lemma 4.21. 1. There exists a constant λ (in fact λ = log
(

2sπ−s
√
|disc(K)|

)
) such that for any index

k between 1 and r + s and any α = (a1, . . . , ar+s) ∈ log ι(OK − 0) there exists β = (b1, . . . , br+s) ∈
log ι(O×K − 0) with

∑
β < λ and bi < ai for all i 6= k.

2. For any index k there exists α = (u1, . . . , ur+s) ∈ log ιO×K such that ui < 0 when i 6= k.

Proof. Part one follows from a geometry of numbers type argument. Here’s a sketch: choose ci such that
ci < exp(ai) for i 6= k and choose ck such that

∏
ci = exp(λ). Then finding β as desired is equivalent to

finding x = (x1, . . . , xn) ∈ ι(OK − 0) such that |xi| < ci for i ≤ r and x2
r+2i−1 + x2

r+2i < cr+i for i > 0. The
geometry of numbers requires only that the volume of this region be > 2n vol(ι(OK)) and the volume can
be shown to depend only on λ. For example, if K = Q(

√
m), m > 0 then Rn = Rr+s = R2 and the region

|xi| ≤ ci with c1 exp(a1) and c1c2 = exp(λ) has area 4c1c2 = 4 exp(λ).
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Part two: part one allows us to construct a sequence αm = (am,1, . . . , am,r+s) 3 log ι(OK − 0) with
(am,i)m decreasing for i 6= k and

∑
αm < λ. Consider the

∑
map

∑
: log ι(OK − 0) → R taking log ι(α)

to log |NK/Q(α)|. If B > 0 then
∑

log ι(α) ≤ B implies |NK/Q(α)| ≤ exp(B) and so NK/Q(α) takes finitely
many integral values (between − exp(B) and exp(B)). Using the observation with B = λ it follows that if
αm = log ι(um) for um ∈ OK − 0 then |NK/Q(um)| ≤ exp(λ) for all m. By the pigeonhole principle there
exist infinitely many indices m such that |NK/Q(um)| = B for some B, which implies that ||(um)|| = B.
Since there are finitely many ideals of a particular bound it follows that (um) are the same ideal so for two
different such indices m and m′ we have um = uum′ for some u ∈ O×K . In other words αm = log ι(u) + αm′

for m 6= m′ for some unit u ∈ O×K and the condition on u follows from the fact that the coordinates of αm
are decreasing for i 6= k.

Proof of the Dirichlet Unit Theorem. It suffices to show that O×K has rank at least r + s − 1. The
previous lemma guarantees the existence of units uk such that log ι(uk) have negative coordinates except in
index k. Since

∑
log ι(uk) = 0 it follows that the k-th coordinate of log ι(uk) must be > 0.

Consider the matrix (ui,j) where log ι(ui) = (ui,1, . . . , ui,r+s). To show that rankO×K = r+s−1 it suffices
to show that r + s− 1 of the log ι(uk) are linearly independent, i.e., the rank of this matrix is ≥ r + s− 1.

Suppose the rank is < r+ s− 1 in which case we may assume that there exist t1, t2, . . . , tr+s−s such that∑r+s−1
j=1 tjui,j = 0 for all i. We may assume that the largest coefficient tk > 0. Then

0 =

r+s−1∑
j=1

tjuk,j

= tkuk,k +
∑

j 6=k,1≤j≤r+s−1

tjuk,j

≥ tkuk,k +
∑

j 6=k,1≤j≤r+s−1

tkuk,j

= tk

r+s−1∑
j=1

uk,j

= −tkuk,r+s

since uk,j < 0 when j 6= k and
∑r+s
j=1 uk,j = 0 for all k. This of course is not possible since tk > 0 and

uk,r+s < 0 as k < r + s.

Lecture 15
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4.4 S-integers and S-units
No notes for today. If S is a finite set of nonzero prime ideals of K we defined

OS = {x ∈ K | vp(x) ≥ 0,∀p /∈ S}.

I remarked that OS is a Dedekind domain as it appears as a localization in commutative algebra. Moreover,
Div(OS) is the free abelian group on Spec(OS) = Spec(OK)−S, which implies that ClS(K) is a quotient of
Cl(K).

I also showed that ιS : OS ↪→ Rn+|S| given by ιS(x) = (σi(x),Re τj(x), Im τj(x), ||p||−vp(x)), where p ∈ S
gives a discrete embedding of OS into Rn+|S|.

Furthermore, writing NS(x) = NK/Q(x)
∏

p∈S ||p||−vp(x) is an integer for x ∈ OS . If x ∈ OS then x ∈ O×S
iff |NS(x)| = 1 and therefore if we look at LogS : Rn+|S| → Rr+s+|S| given by

LogS(xi, yj , zj , tp) = (log |xi|, log(y2
j + z2

j ), log |tp|)
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we see that LogS O×S is a discrete sublattice of ker
∑

: Rr+s+|S| → R. We concluded that O×S is a lattice
of rank at most rkO×K + |S|. To show that in fact O×S has exactly this rank we will introduce the modern
language of algebraic number theory.

Lecture 16
2018-02-21

(Notes by Matt Schoenbauer)

5 Adeles and p-adics

5.1 p-adic completions
If p is a prime ideal of OK , we define a map

v = vp : K× → Z

by vp(x) = the power of p in (x)OK . We also set |x|vp = ||p||−vp(x). If σ : K → R is a real embedding, we
define

|x|σ = |σ(x)|

where | · | is the absolute value on R. If τ : K → C is a complex embedding, we define

|x|τ = |τ(x)|

where | · | is the norm on C.

Lemma 5.1. 1. | · |σ and | · |τ are multiplicative.

2. | · |σ and | · |τ satisfy the triangle inequality.

3. If p is a prime ideal, and v = vp, then

|x+ y|v ≥ min{|x|v, |y|b}

where equality holds if |x|v 6= |y|v.

Proof. 1. Since σ and τ are norms, | · |σ and | · |τ are multiplicative.

2. This is clear.

3. By (a), we can reduce to the case x, y ∈ OK . If pn divides (x) and (y), then pn divides (x+ y). This
gives v(x, y) ≥ min(|x|v, |y|v), which implies the desired inequality. Now suppose |x|v > |y|v, which is
equivalent to v(x) < v(g). If v(x+ y), then

v(x) = v(x+ y − y) ≥ min{v(x+ y), v(−y)}.

v(−y) > v(x), so that the last term in the above equation is just v(x+ y). But we already have

v(x+ y) ≥ min{v(x), v(y)} = v(x)

so that equality holds.

Terminology:

• A place of K is either a real embedding or a pair of complex embeddings on a nonzero prime ideal.
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• Places are often denoted by u, v, w, . . . etc.

• v|∞ means v is real or complex.

• v|R means v is real.

• v|C means v is complex.

• v -∞ for prime ideals.

We then get a norm function | · |v : K → [0,∞) where |x|v = 0 if and only if x = 0.

|x|vp = 0 =⇒ ||p||−vp(x) = 0 =⇒ vp(x) =∞

Definition 5.2. If v is a place of K, then Kv is a metric space completion of (K, | · |v). The elements of Kv

are equivalence classes of Cauchy sequences in K.

Example 5.3. If v|R, we have Q ⊆ σ(K) ⊆ R, which implies R = Kv, since Q ⊆ σ(K) ⊆ R. If v|C
corresponds to K τ−→ C, then τ(K) is dense in C, i.e. Kv = C. This is true since Q ⊆ τ(K) and there is
α ∈ K ∩ (C \ R), so that

C = Q + αQ ⊆ Kv ⊆ C

Terminology: v|∞ is called archimedean or infinite. v -∞ is called nonarchimedean or finite.
Our goal is to understand Kv.

Proposition 5.4. Suppose v = vp -∞.

1. Let (xn) ∈ K be a Cauchy sequence. Then∣∣ lim
n→∞

xn
∣∣
v

= lim
n→∞

|xn|v

From this it follows that | · |v : K×v → ||p||Z.

2. If x ∈ Kv, then |x|v = 0 if and only if x = 0.

3. Kv is a field. It will be a homework exercise to show that Kv is a topological field.

4. Let Ov ⊆ Kv be given by Ov = {x ∈ Kv | x ∈ Kv | |x|v ≤ 1}. Then Ov is a subring with a unique
maximal ideal mv = {x ∈ Kv | |x|v < 1}.

5. mv is a principal ideal.

Proof. 1. ∣∣ lim
n→∞

(xn − 0)
∣∣ = lim

n→∞
|xn − 0|

by the definition of metric space completions. Now |xn| ∈ ||p||Z if xn 6= 0 ∈ K:

lim
n→∞

|xn| ∈ ||p||Z

which implies
| lim
n→∞

xn| ∈ ||p||Z

(limn→∞ xn ∈ K).

2.
|x|v = 0 ⇐⇒ |x− 0|v = 0 ⇐⇒ dist(x, 0) = 0 ⇐⇒ x = 0
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3. Let x ∈ Kv \ {0}. We need to show that 1
x ∈ Kv. Let x = limxn, where each xn ∈ K. Since x 6= 0, we

have |x|v 6= 0. Now
|xn|v = lim

n→∞
|xn|v

Therefore we can assume that each |xn|v 6= 0, so that each xn 6= 0. Thus 1/xn ∈ K. We show that

1

x
= lim
n→∞

1

xn

We have ∣∣∣∣ 1

xn
− 1

xm

∣∣∣∣
v

=

∣∣∣∣xm − xnxmxn

∣∣∣∣
v

=
|xm − xn|v
|xmxn|v

Since |xm − xn| → 0, ((xn) is Cauchy) and the denominator is bounded below, we have that ( 1
xn

) is
Cauchy and has limit 1

x .

To show that Kv is a topological field, one needs to show that the addition, multiplication, and additive
and multiplicative inverse functions are continuous.

4. Ov is closed under multiplication by the multiplicativity of the norm. To show that Ov is closed under
addition, we have

x, y ∈ Ov =⇒ |x+ y|v ≤ max{|x|v, |y|v} =⇒ x+ y ∈ Ov

We now show that mv is an ideal. We have

|x|v < 1, |y|v < 1 =⇒ |x+ y|v ≤ max{|x|v, |y|v} =⇒ x+ y ∈ mv

|x|v < 1, |y|v ≤ 1 =⇒ |xy| < 1 =⇒ xy ∈ mv

Now we show that mv is a maximal ideal. If α ∈ Ov \mv, then |α|v = 1, which implies | 1x | = 1, so that
1/α ∈ Ov. If mv is not maximal, then it is properly contained in some maximal ideal M . But then M
has a unit, and is not a proper ideal of Ov.
So, Ov is a complete local ring.

5. Pick any α ∈ K, where α ∈ p \ p2. Then vp(α) = 1, so that |α|p = 1
||p|| < 1, and α ∈ mv. If β ∈ mv is

any other element, then ||p||Z 3 |β|v < 1, so that |β|v = ||p||−c, where c ≥ 1. Now we have∣∣∣∣βα
∣∣∣∣
v

=
|β|v
|α|v

=
1

||p||c−1
≤ 1

so that β/α ∈ Ov, so that mv ⊆ (α).
Any generator for mv is called a uniformizer of Ov or Kv.

Proposition 5.5. Define Op to be the localization of OK at p. This is the set of fractions a/b where b /∈ p.

1. Op ⊆ Kv. In fact, Op sits inside Ov and is dense in Ov.

2. OK ⊆ Op ⊆ Ov, and OK is dense in Ov.

Proof. 1. If Op 3 x, then vp(x) ≥ 0, so that |x|v ≤ 1. We need all x ∈ Ov − {0} expressed as a limit of
elements in Op. By definition, x is the limit of xn with xn ∈ K×. Also |x|v ≤ 1 is the limit of |xn|v.
This implies |xn|v ≤ 1 for n large. We conclude that K ∩ Ov is dense in Ov.
A standard result from commutative algebra (the commutativity of localization and completion at a
maximal ideal) implies that K∩Ov and the localization Op have the same closures in Ov. This implies
that Op is dense in Ov as well.
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2. Pick x ∈ Op and a, b ∈ OK so that x = a
b and vp(b) = 0. By the definition of localization, p does not

divide (b), so that p and (b) are coprime. This implies that p + (b) = OK , so that there exists α ∈ p
and β ∈ OK such that α+ βb = 1. Now we have

x =
a

b
=
aβ

bβ
=

αβ

1− α
= αβ(1 + α+ α2 + · · · )

Set
xn = αβ(1 + α+ α2 + · · ·αn)

Then
x− xn = αβ(αn+1 + αn+2 + αn+3 + · · · ) = αβαn+1(1 + α+ α2 + · · · )

Now we have

vp(x− xn) =vp(α) + vp(β) + vp(1 + α+ α2 + · · · ) + vp(αn+1)

=vp(α) + vp(β) + vp(1 + α+ α2 + · · · ) + (n+ 1)vp(α)

This expression approaches infinity as n→∞, which implies

x = lim
n→∞

xn

Lecture 17
2018-02-23

(Notes by Caitlyn Booms.)
Recall that there are three different places of K, where K is a number field. We have

v | R ←→ K ↪→ R real place
v | C ←→ {K ↪→ C} complex place, pair of complex embeddings
v -∞ ←→ finite places, prime ideals p 6= 0 of OK

where the first two places are infinite places, denoted v | ∞. Any place v produces a norm | · |v : K → [0,∞),
and we denote the metric space completion of K with respect to this norm by (Kv, | · |v). Then Kv

∼= R
if v | R and Kv

∼= C if v | C. If v - ∞, then we say v = vp. In the homework, we will show that Kv is a
topological field, and we have the following:

Kv = topological field
∪
Ov = {x | |x|v ≤ 1}
∪
mv = {x | |x|v = 1} = (α)Ov ∀α ∈ p \ p2, unique maximal ideal.

Since the completion of K with respect to | · |v comes with an injection of K ↪→ Kv given by constant Cauchy
sequences for every place v, we let each place correspond to this embedding:

v | R corresponds to K ↪→ Kv = R
v | C corresponds to K ↪→ Kv = C
v -∞ corresponds to K ↪→ Kv.

Notation: x denotes the topological closure of x in Kv, which is a complete metric space.
Observe that K = Kv and OK = Op = K ∩ Ov = Ov, where Op is the set of fractions with no p in
the denominator and the second equality follows from the commutative algebra fact that localization and
completion commute for maximal ideals.
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Proposition 5.6. (a) Ov/mnv ∼= OK/pn for v = vp

(b) B0,1 = Ov ⊂ Kv is compact (Heine-Borel).

Proof. (a) We have the sequence of maps

OK ↪→ Ov � Ov/mnv → 0

where OK is dense in Ov and mnv = (αn)Ov = {x ∈ Kv | v(x) ≥ n = v(αn)}. Then x ∈ OK has
vp(x) ≥ n if and only if x ∈ pn, so the map

OK/pn ↪→ Ov/mnv

is injective. For surjectivity, pick any a ∈ Ov. Then we seek x ∈ OK such that x ≡ a mod mnv , which
is true if and only if v(x− a) ≥ n. But Ov = OK so this is immediate as a = limxn, xn ∈ OK , so we
can find x ∈ OK with this property.

(b) Consider the map
φ : Ov −→

∏
k≥1

OK/pk.

Then φ is injective if φ(x) = 0 implies that x ∈ mkv for all k, which implies v(x) ≥ k for all k so
|x|v ≤ ‖p‖k for all k. But then |x|v = 0, so x = 0 and φ is injective. In fact, if the RHS has the product
topology where each OK/pk ∼= Ov/mkv has the discrete topology, then φ is continuous.
(If Xα are topological spaces and

∏
α∈I

Xα has the product topology, then the open sets are of the form∏
α∈finite

Uα
∏

α/∈finite

Xα where Uα ⊂ Xα are open sets.)

To see that φ is continuous, pick an open set
N∏
k=1

Uk
∏
k>N

OK/pk ⊂ RHS. We want to show that the

preimage of this set under φ is open. Since translation is continuous, it suffices to show this for the open
set W = {0}× · · ·×{0}×OK/pN+1×· · · where the k-th {0} is an element of OK/pk for k = 1, . . . , N .
We have that φ−1(W ) = {x ∈ Ov | v(x) ≥ N} = B0,‖p‖−N which is a closed ball. However, this is also
an open ball because

B0,‖p‖−(N−1) = {x ∈ Ov | v(x) ≥ N−1} =
⊔

r∈OK/p

{x ∈ Ov | v(x−αN−1r) ≥ N} =
⊔

r∈OK/p

BαN−1r,‖p‖−N .

Therefore, φ is a continuous injection. ThenOK/pk is finite, so is compact, which implies that
∏
OK/pk

is compact. So we have Ov ∼= φ(Ov) as topological spaces, and the latter is contained in a compact
space, which implies that Ov is compact.
Conclusion: Kv is a locally compact topological field if v -∞ (obvious if v | ∞).

5.2 Adeles and ideles
Definition 5.7. Let K be a number field. Define the adele of K as

AK =
∏

v places{Ov}

′
Kv = {(xv) ∈

∏
Kv | xv ∈ Ov for almost all v}.

AK has the subspace topology inherited from
∏
Kv with the product topology.

Proposition 5.8. AK is a locally compact topological ring.
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Proof. Let (xv), (yv) ∈ AK . Then there exists a finite set S such that xv, yv ∈ Ov for v /∈ S. This implies
that xv+yv, xvyv ∈ Ov for v /∈ S, so x+y, xy ∈ AK . In the homework, we will show that AK is a topological
ring. It is locally compact because ∏

v|R

[av, bv]
∏
v|C

{closed balls}
∏
v-∞

Ov

is compact by Tychenoff’s Theorem.

Theorem 5.9. (a) Define the norm | · |AK : AK → [0,∞) such that |(xv)|AK =
∏
v |xv|v. Let ι : K ↪→ AK

such that ι(x) = (x, x, x, . . . ) which always converges. Then |ι(x)|AK = 1 for every x ∈ K× and ι(K)
is a discrete subgroup of AK .

(b) ι(K) is a cocompact lattice in AK .

Proof. (a): If x ∈ K×, then (x)OK =
∏

p∈S p
vp(x) where S is a finite set, so v /∈ S means v(x) = 0. This

implies that x ∈ Ov for v /∈ S so ι(x) = (x, x, . . . ) ∈ AK . In the homework, we will show that |K×|AK = 1.
Then ι(K) is discrete if and only if ι(K)∩ open set = finite set. Consider

ι(K) ∩

∏
v|R

(−1, 1)
∏
v|C

{|z| < 1}
∏
v-∞

Ov

 = {x ∈ K | x ∈ (−1, 1) for v|R, |x| < 1 for v|C, v -∞}

where the set ι(K) is intersected with is an open set. Then we have

|x|AK =
∏
v|R

|x|v
∏
v|C

|x|v
∏
v-∞

|x|v

is in the open ball with | · |AK < 1, but |K×|AK = 1. Thus, we must have

ι(K) ∩

∏
v|R

(−1, 1)
∏
v|C

{|z| < 1}
∏
v-∞

Ov

 = {0}

which gives that ι(K) is discrete.
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(Notes by Matt Schoenbauer.)
(b): We have

AK/K =
⋃
S

K∞ ×KS ×
∏
v/∈S

Ov/K.

Pick
(av) ∈ K∞ ×KS ×

∏
v/∈S

Ov

Claim 1. (av) ∈ K +K∞ ×KS\{u} ×
∏
v∈S\{u}Ov for any u ∈ S.

Pick u ∈ S. If au ∈ Ou there is nothing to do. Otherwise au ∈ Ku = FracOu but not in Ou so
nu = −u(au) > 0. Now pick any $u ∈ pu \ p2

u, where $u ∈ OK . Then

au =
bu
$nu
u
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for some bu ∈ Ou. The Chinese Remainder Theorem gives xu ∈ OK such that xu ≡ bn mod pnuu and xu ≡ 0
mod $nu

pnuu
(since $nu

u /pnuu and pnuu are coprime). Note that we have

(av)v −
(
xu
$nu
u

)
v

∈ AK

where xu
$nuu

is identified with an element of AK via the embedding ι.
When v = u note that

xu ≡ bu mod pnuu =⇒ pnuu | xu − bu
so

u(xu − bu) ≥ nu = u($nu
u ).

This implies that

au −
xu
$nu
n

=
bu − xu
$nu
u

∈ Ou.

When v /∈ S, the assumption that $nuu
pnuu

| xu in OK implies that v(xu) ≥ v

(
$nun
pnuu

)
= v($nu

u ) and so

av − xu/$nu
u ∈ Ov.

We conclude that (av) − ι(xu/$
nu
u ) ∈ K∞KS−{u}

∏
v/∈S−{u}Ou. Inductively we deduce that (av) ∈

K +K∞
∏
v-∞Ov and so

AK/K = (K +K∞
∏
Ov)/K = K∞

∏
Ov/(K ∩K∞

∏
Ov) = K∞

∏
Ov/OK = (K∞/OK)

∏
Ov.

This is compact by Tychonoff and the fact that OK is a full rank lattice in K∞.

Recall that | · |K : AK → [0,∞) is defined by |(av)|K =
∏
|av|v.

Proposition 5.10. If (av) ∈ AK then |(av)|K 6= 0 if and only if (av) ∈ A×K where

A×K =
∏
{O×v }

′
K×v = {(av) ∈

∏
K×v | av ∈ O×v for almost all v}.

Proof. Clearly av 6= 0 and if av /∈ O×v then av ∈ mv so |av|v ≤ ||pv||−1 ≤ 2−1. But if av /∈ O×v for infinitely
many v then (av)|K ≤

∏
1/2 = 0.

Definition 5.11. Let A1
K ⊂ A×K be the kernel of the group homomorphism | · |K : A×K → (0,∞).

Remark 8. The most natural topology to put on A×K is the smallest topology that makes the map A×K →
AK ×AK given by x 7→ (x, x−1) continuous. This topology is NOT the subset topology from AK . However,
the two subset topologies on A1

K ⊂ AK and A1
K ⊂ A×K are the same.

Theorem 5.12. The map ι : K → AK takes K× to A1
K and under this map K× is a cocompact lattice in

A1
K , i.e., A1

K/K
× is compact.

We give two applications.

Application 5.13. The finiteness of the class group. The map A1
K → Div(K) sending (av) to

∑
v-∞ v(av)[v]

is continuous and surjective. The projection to Cl(K) factors through A1
K/K

× and therefore Cl(K) is a
discrete group (a quotient of Div(K)) which is the image of the compact group A1

K/K
×. It is therefore

discrete and compact and so finite.
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Application 5.14. The Dirichlet unit theorem. The map from the previous application fits in the following
exact sequences

1→ K1
∞

∏
O×v /O×K → A1

K/K
× → Cl(K)→ 1

where K1
∞ ⊂ K∞ are the tuples of product 1. The kernel is closed (K1

∞ is closed in K∞, and so are O×v in
Kv) inside the compact set A1

K/K
× and therefore it is compact. Consider the map

log : K1
∞

∏
O×v → Rr+s

sending (xv) to (log |xv|v)v|∞. This map lands in the kernel ∼= Rr+s−1 of Σ and factors through O×K so

log : K1
∞

∏
O×v /O∞K → Rr+s−1/ logO×K .

But the LHS is compact and log is continuous so the RHS is compact which implies that logO×K is cocompact
in Rr+s−1.

Lecture 19
2018-02-28

First, if G is a locally compact topological group there exists a unique up to scalars (left) Haar measure
volG which is finite on compact measurable sets and satisfies

volG(gX) = volG(X)

for all g ∈ G and X measurable.
On the homework you had to show that if volv is the Haar measure on the abelian group (Kv,+) and

volK is the Haar measure on the abelian group (AK ,+) then

volv(aX) = |a|v volv(X)

volK(aX) = |a|K volK(X)

The idea in both cases is that if R is a locally compact topological ring with Haar measure volR on the
abelian group (R,+) then for a ∈ R the map vola(X) = volR(aX) is another Haar measure which is then
off from volR(X) by a scalar which can be computed using any suitable compact X.

Theorem 5.15. (Adelic Minkowski) Suppose X ⊂ AK is a compact set with volK(X) > volK(AK/K).
Then there exist a 6= b ∈ X such that a− b ∈ K.

Proof. Let F ⊂ AK be a fundamental region for AK/K. Its closure is compact and has the same volume as
AK/K. Then

volK(X) =
∑
u∈K

volK(X ∩ (F + u)) =
∑
u∈K

((X − u) ∩ F ) > volK(F ).

We used the Haar property in the second equality. By the pigeonhole principle this implies that there exist
u 6= v ∈ K such that X − u ∩X − v 6= ∅. This implies that there exist a, b ∈ X such that a− u = b− v and
so a− b = u− v ∈ K×.

Theorem 5.16. The subgroup K× of A×K is a cocompact lattice in A1
K .

Proof. That it lands in A1
K you had to show on the homework. It is discrete since K is discrete in AK and

A1
K ⊂ AK is a closed subset. It remains to show that A1

K/K
× is compact.

Fix cv > 0 such that cv = 1 for almost all v and consider X = X{cv} = {(xv) ∈ AK | |xv| ≤ cv,∀v}.
Increasing finitely many cv we can ensure that volK(X) > volK(AK/K).

Let a = (av) ∈ A1
K be any idele of unit norm. Then

volK(a−1X) = |a|−1
K volK(X) = volK(X) > volK(AK/K)
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and so adelic Minkowski implies that there exist u 6= v ∈ X such that u/a − v/a = γ ∈ K×. But then we
deduce that

a = γ−1(u− v) ∈ K×(X −X).

As a result
A1
K/K

× = K×(X −X)/K×

and so A1
K/K

× is the image under the projection of X − X. But X is compact (Tychonoff) and − is
continuous so X −X is compact and therefore A1

K/K
× is compact.

6 Ramification and Galois theory

6.1 Prime ideals under extensions
A basic question is the following. Suppose L/K are number fields and p is a prime ideal of OK . Then pOL
is an ideal of OL and will decompose into a product of prime ideals of OL. What are these prime factors?
And what arithmetic significance do they have? Can they be predicted?

Example 6.1. (From algebra) If K = Q and L = Q(i). The ideal (2)Z[i] factors as (1 + i)2. If p is a
prime ≡ 3 (mod 4) then (p)Z[i] stays a prime ideal in Z[i]. If p ≡ 1 (mod 4) then (p)Z[i] splits as a product
(p)Z[i] = qq. For example (5)Z[i] = (2 + i)(2− i).

Proposition 6.2. Suppose L/K are number fields (also works for a finite extension of fraction fields of
integral rings). If p is a prime ideal of OK and q is a prime ideal of OL then the following are equivalent:

1. q | pOL

2. q ⊃ p

3. q ∩ OK = p

4. q ∩K = p.

If any of these condition are satisfied we say q | p or q lies above p or p lies below q.

Proof. 1 implies 2 becauase p ⊂ pOL. 2 implies 3 because q ∩ OK is an ideal of OK , it is proper (otherwise
1 would be in q) and contains p and so must equal p by maximality of p. 3 implies 4 because OL ∩K = OK .
Finally 4 implies 1 because then p ⊂ q and so pOL ⊂ q.

Proposition 6.3. Suppose L/K are number fields.

1. Every prime ideal q of OL lies above a prime ideal p of OK .

2. Every prime ideal p of OK lies below a prime ideal q of OL.

Proof. For the first part note that q ∩ OK is an ideal of OK . It cannot be everything because then 1 ∈ q
and if α ∈ q then α | NL/K(α) ∈ OK and so q ∩ OK 6= 0. Moreover,

OK/(OK ∩ q) ∼= (OK + q)/q ⊂ OL/q

The RHS being a field implies that the LHS is an integral domain and so q ∩ OK is a prime ideal of OK .
For the second part, we seek q of the form pOL. Since p is proper it follows that p−1 ) OK and so

p−1 =
∑

Zαi where at least one of the αi is not in OK . With α = αi /∈ OK we have αpOL ⊂ p−1pOL = OL.
If pOL = OL it would follows that αOL ⊂ OL but then we’d deduce that α ·1 ∈ OL contradicting our choice.
Thus pOL ( OL. Finally, any prime factor q of pOL will lie above p.

Example 6.4. Suppose m is square-free, different from 1 and ≡ 2, 3 (mod 4). Let K = Q(
√
m) in which

case OK = Z[
√
m].
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1. If X2 −m = 0 has no solutions in Fp then

OK ∼= Z[X]/(X2 −m)→ Fp[X]/(X2 −m)

is surjective onto the field Fp[X]/(X2−m) and has kernel (p)OK . Thus (p)OK is a prime ideal of OK .

2. If X2 −m = 0 has two solutions in Fp, with representatives a and −a in Z then

OK ∼= Z[X]/(X2 −m)→ Fp[X]/(X2 −m) ∼= Fp[X]/(X − a)⊕ Fp[X]/(X + a) ∼= Fp ⊕ Fp

is again surjective. The preimage of Fp⊕0 is the ideal (p,
√
m−a) which is then prime since the image

is a field. Similarly the preimage of 0⊕ Fp is the prime ideal (p,
√
m+ a) and

(p)OK = (p,
√
m− a)(p,

√
m+ a)

is the decomposition into primes.

3. Finally, if p | m then
OK ∼= Z[X]/(X2 −m)→ Fp[X]/(X2)

is surjective and the preimage (p,
√
m) of XFp[X]/(X2) is a prime ideal with (p)OK = (p,

√
m)2.
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6.2 Ramification and inertia indices
Definition 6.5. If R is a Dedekind domain and p is a prime (and therefore maximal) ideal then the residue
field at p is kp = R/p.

Suppose now that L/K are number fields, p is a prime ideal of OK and q is a prime ideal of OL such
that q | p. Then kq = OL/q ⊃ (q +OK)/q ∼= OK/p = kp and so kq is a finite extension of kp.

Definition 6.6. The inertia index fq/p = [kq : kp]. The ramification index is the exponent vq(pOL) of
the prime ideal q in the prime ideal decomposition of pOL.

Example 6.7. Let K = Q(i). We already know that (2)OK = (1+ i)2, (p)OK is prime when p ≡ 3 (mod 4)
and if p ≡ 1 (mod 4) then (p)OK = (a+ bi)(a− bi) where p = a2 + b2. Let’s compute the ramification and
inertia indices.

1. p = 2 and q = (2 + i). Then eq/p = 2 and kq = Z[i]/(1 + i) ∼= Z[X]/(X2 + 1, X + 1) ∼= Z/2 ∼= F2 and
so fq/p = 1.

2. p ≡ 1 (mod 4) with a2 + 1 ≡ 0 (mod p). Let q1 = (p, a + i) and q2 = (p, a − i) (If p = u2 + v2 then
(p, a+ i) = (u+vi) and (p, a− i) = (u−vi)). Since the setup is symmetric we only compute for q = q1.
Clearly eq/p = 1 from the prime decomposition. Next, Z[i]/(p, a + i) ∼= Z[X]/(X2 + 1, p, a + X) ∼=
Fp/(a2 + 1) = Fp and so fq/p = 1.

3. If p ≡ 3 (mod 4) then q = (p)Z[i] is a prime ideal and so eq/p = 1. Now Z[i]/pZ[i] ∼= Fp[X]/(X2 +1) ∼=
Fp2 since X2 + 1 doesn’t have a root mod p. Thus fq/p = 2.

Our goal theorem is the following:

Theorem 6.8. If L/K are number fields, p is a prime ideal of OK and q1, . . . , qr are the distinct prime
ideals of OL appearing in the prime factorization of pOL. Then

r∑
i=1

eqi/pfqi/p = [L : K]
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Proposition 6.9. Suppose M/L/K is a tower of number fields and p, q and r ideals of OK , OL and OM
respectively such that p | q | r. Then

er/p = er/qeq/p

fr/p = fr/qfq/p

Proof. This follows from definitions.

Lemma 6.10. Let L/K be number fields and p a prime ideal of OK . Then dimkp(OL/pOL) ≤ [L : K].

Proof. Let n = [L : K]. We need to show that any n + 1 elements α1, . . . , αn+1 of OL/pOL have a
nontrivial kp dependence. Since dimK L = n, there exist β1, . . . , βn+1 ∈ K, not all 0, such that

∑
αiβi = 0.

Multiplying by suitable integers we may assume that βi ∈ OK and we’d like to find such a dependence
such that the images of βi ∈ OK in kp = OK/p are not all 0. Suppose βi ∈ p for all i. Then the ideal
J = (β1, . . . , βn+1) =

∑
OKβi ⊂ p. Let J−1 =

∑
OKγi. Then JJ−1 =

∑
OKβiγj = OK and thus

βiγj ∈ OK for all i, j and βi0γj0 /∈ p for some i0, j0. Then
∑
αiβi = 0 implies

∑
αiβiγj0 = 0 is a linear

dependence among the αi, with coefficients in OK and such that at least one of the coefficients (βi0γj0) does
not vanish in kp. Thus αi are dependent over kp and the conclusion follows.

Theorem 6.11. Suppose L/K are number fields.

1. If p is a prime ideal of OK and qi are the distinct prime factors of pOL then∑
eqi/pfqi/p = [L : K]

where recall that pOL =
∏

q
eqi/p
i and fqi/p = [kqi : kp].

2. If I is a fractional ideal of K then ||IOL|| = ||I||[L:K].

Proof. By the multiplicativity of norm we have:

||pOL|| =
∏
||qi||ei =

∏
|kqi |ei =

∏
|kp|eifqi/p = ||p||

∑
eifi

We first prove (1) for K = Q. Indeed, then p = (p) and so OL/pOL ∼= F[L:K]
p since OL is a rank n free

Z-module which implies that pn = p
∑
eifi and the conclusion follows.

Next we prove (2). By multiplicativity of the norm of an ideal and the fact that ||aI|| = |NK/Q(a)|||I||
it suffices to treat the case of prime ideals I = p in which case we need to show that ||pOL|| = ||p||n where
n = [L : K]. Let p be the prime of Z below p of OK and let (p)OK =

∏
p
epi/p
i . From the lemma we know

that dimkpi
OL/piOL ≤ [L : K] while from part (1) we know that

∑
epi/pfpi/p = [K : Q] and, equivalently

for L/Q, ||(p)OL|| = p[L:Q]. So

p[L:Q] = ||(p)OL||

=
∏
||piOL||epi/p

=
∏
|OL/piOL|epi/p

≤
∏
|kpi |[L:K]epi/p

=
∏
|Fp|[L:K]fpi/pepi/p

= p[L:K][K:Q] = p[L:Q]

Therefore all inequalities are equality and so ||piOL|| = ||pi||[L:K] for all i and in particular for p = pi for
some i.
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Finally, from (2) we deduce (1). We already know that

||pOL|| = ||p||
∑
eqi/pfqi/p

and ||pOL|| = ||p||[L:K] from part (2) and the conclusion follows.
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6.3 Factoring prime ideals in extensions
Theorem 6.12. Suppose L/K are number fields and L = K(α) for an integral element α with minimal
polynomial f(X) ∈ OK [X]. Suppose p is a prime ideal of OK lying above a prime p of Q such that p -
[OL : OK [α]]. Let f(X) =

∏
gi(X)ei be the prime factorization of f(X) mod p in kp[X]. Then qi =

pOL + gi(α)OL are prime ideals lying above p, fqi/p = deg gi(X) and

pOL =
∏

qeii .

I proved this in class. I’ll write it up but in the meantime check ou
http://www.math.uconn.edu/∼kconrad/blurbs/gradnumthy/dedekindf.pdf

Theorem 6.13. Let K/Q be a number field. If a prime p ramifies in K then p | disc(K).

Proof. For now the “only if” direction, the other part begin deferred until after Galois theory.
Suppose q2 | (p)OK . Then (p)OK = qI where I is divisible by all the prime ideals dividing (p). Let

α ∈ I − (p). Then α ∈ q for every q | (p).
Let σ1, . . . , σn : K ↪→ C be the embeddings fixing Q and let L =

∏
σi(K) be the composite. For every

prime ideal q | (p) of OK write qOL =
∏

ri as a product of (not necessarily distinct) prime ideals of OL.
Since α ∈ q it follows that α ∈ ri and as q varies across the prime ideals dividing (p)OK , ri varies across the
prime ideals dividing (p)OL. Thus α ∈ r for every prime ideal r | (p) of OL.

For every σ = σi, σ(r) is also a prime ideal of σ(OL) = OL. Thus α ∈ σ(r) and so σ(α) ∈ r for every σ.
Suppose α1, . . . αn is an integral basis ofOK and α =

∑
miαi. Since α /∈ (p) it follows that at least onemi,

saym1 is not divisible by p. Now the determinant det(σi(α), σi(α2), . . . σi(αn))i=1,...,n is a linear combination
of products of elements of OL with at least one fact in r which implies that D = discK/Q(α, α2, . . . , αn),
which is the square of this determinant, must be in r for all r | (p) of OL. Thus D ∈ r ∩Q = (p).

But we’ve seen before that disc(α, α2, . . . , αn) = det(B)2 disc(α1, . . . , αn) = det(B)2 disc(K) where B is
the matrix taking α1, . . . , αn to α, α2, . . . , αn. Since det(B) = m1 is coprime to p is follows that p | disc(K)
as desired.

Remark 9. 1. If M/L/K are number fields and p is a prime ideal of OK which ramifies in L then p
ramifies in M .

2. If L/K are number fields, p a prime ideal of OK above p then p ramifies in L implies p | disc(L).

3. As a corollary only finitely many prime ideals of OK can ramify in L because the previous remark
implies that if p ramifies in L then p | disc(L)OK .

Example 6.14. Suppose L/K is the extension Q(ζp)/Q. The discriminant if ±pp−2 so only p ramifies.

1. Clearly (p) = (ζp − 1)p−1 so if we write p = (ζp − 1) then fp/p = 1 and ep/p = p− 1.
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2. If q 6= p then q doesn’t ramify in Q(ζp). Let r be the smallest integer such that qr ≡ 1 (mod p) which
implies that Φp(X), the minimal polynomial of ζp, will split into linear factors over Fqr but will stay
irreducible over any smaller finite field. This implies that Φp(X) mod q is a product g1(X) · · · gk(X)
where gi(X) are minimal polynomials of generators of Fpr over Fp. As a result deg gi(X) = r and so
kr = p− 1. We conclude that (q) factors over Q(ζp) into (p− 1)/r factors with eq/q = 1 and fq/q = r.
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6.4 Ramification in Galois extensions
Proposition 6.15. Let L/K be a Galois extension of number fields.

1. σ ∈ Gal(L/K) acts on OL.

2. if q is a prime ideal of OL above a prime ideal p of OK then σ(q) is also a prime ideal of OL above p.

3. Gal(L/K) acts transitively on the set of prime factors of pOL.

4. if q, q′ | p then

eq/p = eq′/p

fq/p = fq′/p

5. If pOL =
∏r
i=1 q

e
i with e the common ramification index and f the common inertia index then ref =

[L : K].

Proof. First part: same polynomial.
Second part: if xy ∈ σ(q) then σ−1(x)σ−1(y) ∈ q and so x ∈ σ(q) or y ∈ σ(q). Thus σ(q) is a prime

ideal. Also σ(q) ∩K = σ(q ∩K) = σ(p) = p.
Third part: Suppose q and q′ are distinct prime factors of pOL and q′ 6= σ(q) for all σ ∈ Gal(L/K). By

the Chinese Remainder Theorem we can find α ∈ OL such that

α ≡ 0 (mod q′)

α ≡ 1 (mod α(q))

for all α ∈ Gal(L/K). Then NL/K(α) =
∏
σi(α) ∈ q′ ∩ K = p. But σi(α) /∈ p ⊂ q for all σ giving a

contradiction.
Fourth part: If pOL =

∏
qeii then pOL =

∏
σ(qi)

ei . Since Gal(L/K) acts transitively it follows that
ei = ej for all i, j. Moreover, kqi = kqj by the same argument and so the equality of inertial indices follows.

Fifth part: immediate from
∑
eifi = [L : K].

Definition 6.16. Suppose L/K are number fields and q | p ideals of OL and OK . The decomposition
group Dq/p = {σ ∈ Gal(L/K)|σ(q) = q}. Then Dq/p = StabGal(L/K)(q).

Lemma 6.17. 1. If σ ∈ Gal(L/K) then σDq/pσ
−1 = Dσ(q)/p.

2. If p =
∏r
i=1 q

e
i then |Dq/p| = ef .

3. If σ ∈ Dq/p then σ induces an automorphism σ on kq which fixes kp. This yields a homomorphism
Dq/p → Gal(kq/kp).
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Proof. Part 1: This is true of all group actions. This implies that all decomposition groups have the same
cardinality.

Part 2: Since Gal(L/K) acts transitively on the set of primes qi in pOL =
∏r
i=1 q

e
i it follows that

[L : K] = |Gal(L/K)| = r|Dq/p| and so |Dq/p| = ef . Here I use that if G acts on a finite set X and x ∈ X
has stabilizer H then Gx = (G/H)x has as many elements as the set G/H; if the action is transitive then
|X| = |G/H| and so |H| = |G|/|X|.

Part 3: Follows from definitions.

Definition 6.18. For q | p the inertia subgroup Iq/p is the kernel 0 → Iq/p → Dq/p → Gal(kq/kp). It
consists of σ ∈ Dq/p such that σ(x) ≡ x (mod q) for all x ∈ OL.

Example 6.19. In the extension Q(ζp)/Q the decomposition group of p/p is the entire Galois group since
(p) = pp−1, here p = (ζp − 1). The inertia subgroup consists of σ such that σ = id on Fp, i.e., σ(x) ≡ x
(mod p) for all x. It’s enough to check this for x = ζp and if σ ∈ GK/Q sends ζp to ζap for some a coprime to
p then clearly ζp − 1 | ζap − ζp and so Ip/p = Dp/p = GK/Q.
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Suppose L/K is a Galois extension of number fields. Let p a prime ideal of OK and pOL =
∏r
i=1 q

e
i with

f = fq/p. Let LD = LDq/p and LI = LIq/p in which case we get extensions L/LI/LD/K. Let qI = q ∩ LI
and qD = q ∩ LD in which case q | qI | qD | p.

Theorem 6.20. 1. The sequence 0→ Iq/p → Dq/p → Gal(kq/kp)→ 0 is exact and |Iq/p| = eq/p.

2. We have

eq/qI = eq/p fq/qI = 1
eqI/qD = 1 fqI/qD = fq/p
eqD/p = 1 fqD/p = 1

In particular qD is inert in L, qI/p is unramified, and q/qI is totally ramified.

Proof. First, [L : LD] = ef from the previous proposition and so [LD : K] = r. Since Gal(L/LD) = Dq/p

acts transitively on the primes above qD but acts trivially on q it follows that fq/qDeq/qD = [L : LD] = ef .
But e = eq/qDeqD/p and f = fq/qDfqD/p and so eqD/p = fqD/p = 1.

(1): Let Gkq/kp = 〈φ〉 where φ(x) = x|kp| is the Frobenius generator. Let α ∈ OL such that kq = kp(α)
andwrite

P (X) =
∏

σ∈Dq/p

(X − σ(α)) ∈ OLD [X].

Then P (X) mod qD ∈ kqD [X] = kp[X] from the above. Since P (X) mod qD vanishes at α it follows that

φ(P (α) mod qD) = P (φ(α)) mod qD = 0

and so φ(α) is also a root of P (X) mod qD and therefore φ(α) ≡ σ(α) (mod qD) for some σ ∈ Dq/p. But
then φ is the image of σ under Dq/p → Gkq/kp as α generates kq over kp.

(2): Next, if α ∈ OL is such that kq = kqI (α) then g(X) =
∏
σ∈Iq/p(X−σ(α)) ∈ OLI [X]. Since σ(α) ≡ α

(mod q) for σ ∈ Iq/p it follows that g(X) ≡ (X − α)|Iq/p| (mod q). The minimal polynomial of α over kqI
is irreducible over a perfect field so is separable. It also divides g(X) mod qI . However, g(X) has a single
root over kq and therefore the only separable polynomial dividing it is X − α which is then in kqI [X]. We
conclude that α ∈ kqI and so kq = kqI (α) = kqI so fq/qI = 1 as desired. From the multiplicativity of inertial
indices we conclude that fqI/qD = f .

If k is the number of primes of LI above qD then keqI/qDfqI/qD = [LI : LD] = [Dq/p : Iq/p] ≤ [kq : kp] =
fq/p. We conclude that k = eqI/qD = 1 and so eq/qI = eq/p.
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Proposition 6.21. Suppose L/K, q | p, LI and LD as before.

1. LD is the largest subextension such that q ∩ LD/p has e = f = 1.

2. If GL/K is abelian then LD is the largest subextension in which p splits completely.

3. LI is the smallest subextension such that q/aI is totally ramified. Equivalently LI is the largest extension
such that qI/p is unramified.

Proof. (1): Suppose L/K ′/K such that q∩K ′/p has e = f = 1 and let H = GL/K′ . Let p′ = q∩K ′ in which
case immediately from the definition it follows thatD′ = Dq/p′ = Dq/p∩H and similarly I ′ = Iq/p′ = Iq/p∩H.
Thus the tower L/LI/LD/K in the case of L/K ′ and q | p′ becomes L/LI

′
/LD

′
/K ′ with LI

′
/LI and LD

′
/LD.

Since ep′/p = fp′/p = 1 and so eq/p′ = eq/p and fq/p′ = fq/p. This implies that [L : LI
′
] = [L : LI ]

and [LI
′

: LD
′
] = [LI : LD]. But since LD ⊂ LD

′
it follows that LD = LD

′
and so Dq/p ⊂ H. This gives

K ′ ⊂ LD as desired.
(2): In this case Dq/p is independent of q as decomposition groups are all conjugate. We conclude that

e = f = 1 for all q/p and therefore p splits completely in LD.
(3): Suppose K ′/K is the largest subextension in which p′/p is unramified. Then eq/p′ = eq/p and the

same argument as in the first part shows that LI ⊂ LI′ ⊂ L are such that [L : LI
′
] = [L : LI ] which implies

that LI = LI
′
. But then K ′ ⊂ LI′ = LI as desired.
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Corollary 6.22. Suppose L,L′/K are number fields such that a prime ideal p of K is unramified in L and
L′. Then p is unramified in LL′.

Proof. Let M be the Galois closure of LL′ and let r be a prime of M above p. Let q = r∩L and q′ = r∩L′.
Then q/p unramified implies that L ⊂M Ir/p and similarly for L′. Thus LL′ ⊂M Ir/p . Varying r we conclude
that p is unramified in LL′.

Corollary 6.23. Suppose L/K are number fields and p is a prime of OK . If p is unramified in L then it is
unramified in the Galois closure of L/K.

Proof. Let M/K be the normal closure of L/K. Since p is unramified in L it is also unramified in σ(L) for
every σ ∈ Gal(M/K). Therefore, if q | p is a prime of OM and M I = M Iq/p it follows that σ(L) ⊂ M I as
M I is the maximal extension in which p is unramified. This implies that M =

∏
σ(L) ⊂ M I which means

that p is unramified in M .

6.5 Applications of ramification
6.5.1 Frobenius

If L/K with ideals q | p such that q/p is unramified then Dq/p
∼= Gkq/kp .

Since Gkq/kp is cyclic generated by a lift of Frobq/p it follows that we may lift Frobq/p to Dq/p, well
defined up to inertia.

Lemma 6.24. If σ ∈ GL/K then Frobσ(q)/p := σ Frobq/p σ
−1 lifts a generator of Gkσ(q)/kp

∼= Gkq/kp and
thus the conjugacy class of Frobq/p is independent of the choice of q. In particular if GL/K is abelian then
Frobq/p as a Galois element does not depend on q.

Proof. Follows from the fact that Dσ(q)/p = σDq/pσ
−1.

Definition 6.25. We denote Frobp the conjugacy class of any Frobq/p.
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Example 6.26. If p 6= q are odd primes then Q(ζp) is unramified at q. Say r | q. What is Frobr/q ∈
Gal(K/Q)? We know GK/Q ∼= F×p and if q has exact order r in F×p then fr/q = r and so Frobr/q(x) = xq in
F×qr . Since ζp ∈ F×qr it follows that Frobr/q(ζp) = ζqp and so Frobr/q has image q ∈ F×p .

Remark 10. In particular, if
ρ : GL/K → GL(n, F )

is a homomorphism such that ρ(Iq/p) = In for all q lying above a fixed prime p then ρ(Frobp) has a well-
defined trace. Indeed, follows from the fact that the trace of a matrix is a class function.
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6.5.2 Dedekind’s theorem on cycle types

Let K/Q be a finite Galois extension, α ∈ OK with minimal polynomial f(X) ∈ Z[X]. Writing α1, . . . , αn
for the roots of f(X) it follows that GK/Q ⊂ Sn as permutations of the set {α1, . . . , αn}.

Theorem 6.27 (Dedekind). Let K/Q as above and p a prime number not dividing the discriminant of f(X).
Let

f(X) mod p =

r∏
i=1

gi(X) (mod p)

be the prime factorization in Fp[X] into distinct irreducible polynomials. Then there exists σ ∈ GK/Q with
cycle type (in Sn) (deg g1(X), . . . ,deg gr(X)).

Tate. Let R = Z[α1, . . . , αn] ⊂ OK and let m be a maximal ideal of R containing p. Then m ∩ Z = pZ and
therefore

R/m ∼= Z[α1, . . . , αn]/m ∼= Fp(α1, . . . , αn) = E

is the splitting field of f(X) mod p.
The Galois group GK/Q acts on R and we denote Dm = {σ ∈ GK/Q | σ(m) = m}. Then Dm acts on

R/m ∼= E and therefore we obtain a homomorphism Θ : Dm → GE/Fp .
If Θ(σ) = 1 it follows that σ(x) ≡ x (mod m) for all x ∈ R. If σ 6= 1 then σ(αi) = αj for some j 6= i

(recall that GK/Q permutes the roots of f(X)) and so αi ≡ αj (mod p). But this would imply that p divides
the discriminant of f(X) contradicting the hypothesis. Therefore Θ is injective.

Note suppose that a ∈ EIm Θ. By the Chinese remainder theorem there exists α ∈ R such that α ≡ a
(mod m) and α ≡ 0 (mod σ−1(m)) for all σ ∈ GK/Q −Dm. Let

g(X) =
∏

σ∈GK/Q

(X − σ(α)) ∈ R[X]GK/Q = Z[X].

Modulo m we see that

g(X) mod m =
∏
σ∈Dm

(X − a)
∏

σ∈GK/Q−Dm

X = (X − a)uXv

by choice of α. The minimal polynomial of a over Fp is separable and irreducible and must divide g(X) and
the only such polynomial can be X−a. We conclude that a ∈ Fp and so EIm Θ = Fp so Im Θ = GE/Fp which
implies that Θ is surjective as well.

Finally, consider the Frobenius map x 7→ xp generating GE/Fp . There exists σ ∈ Dm such that Θ(σ) = φ.
But σ must permute the roots of each gi(X) and since the order of φ(x) as an automorphism of the splitting
field of gi(X) is exactly deg gi(X) it follows that as a permutation of the roots of gi(X) the automorphism
σ is a cycle of length exactly deg gi(X).

Partitioning the roots {α1, . . . , αn} mod p into roots of the various gi(X) we obtain the desired result.
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Example 6.28. The polynomial X7 − X − 1 is irreducible mod 2 so its Galois group has a 7-cycle. It
factors into a quadratic times a quintic mod 3 so the Galois group has a σ with cycle tpe (2, 5). Then σ5

is a transposition and so the Galois group has a transposition and a 7-cycle. But S7 is generated by such
elements so the Galois group is S7.

Lecture 26
2018-03-23

7 Higher ramification
Definition 7.1. Suppose L/K is a Galois extension of number fields and q | p are prime ideals of OL and
OK . Let

Dq/p,m = {σ ∈ Dq/p|σ(x) ≡ x (mod qm)}.

Example 7.2.

Dq/p,0 = Dq/p

Dq/p,1 = Iq/p

Dq/p,2 = Pq/p

where Pq/p is “wild inertia”.

Theorem 7.3. Suppose L/K, q | p and Dq/p,m as above.

1. For m ≥ 0 the group Dq/p,m is normal in Dq/p.

2. The filtration D = D0 ⊃ D1 ⊃ . . . is separated, i.e., ∩Dm = {1}.

3. There exist injections Iq/p/Pq/p ↪→ k×q and for m ≥ 2, Dm/Dm+1 ↪→ kq.

4. Pq/p is the p-Sylow subgroup of Iq/p.

5. Dq/p is a solvable group.

Proof. Normality is straightforward. If α 6= 1 in Dq/p ⊂ GL/K then σ(α) 6= α for some α ∈ OL. But then
α ∈ Dq/p,m implies σ(α)− α ∈ qm and so m ≤ vq(σ(α)− α) <∞. This implies the second part.

Remark that D0/D1 = Dq/p/Iq/p ∼= Gkq/kp
∼= Z/fq/pZ is cyclic.

For (3) I only have the idea: Dq/p
∼= GLq/Kp

and the maps are Dq/p,m → kq are given by

σ 7→ σ($)−$
$m

mod $

where $ ∈ q − q2 is a uniformizer for Lq. Here I used that if σ ∈ Dq/p,m then σ($)−$
$m ∈ OLq

and so its
reduction mod $ is in kLq

∼= kq. Showing that the map is a well-defined injective homomorphism as in part
(3) follows from standard results over the p-adics.

From (3) we conclude that Pq/p is a p-power group and Iq/p/Pq/p has order dividing |kq|−1 so is coprime
to p. We conclude that P is the p-Sylow subgroup of I.

Finally, the filtration from (2) has abelian graded pieces so Dq/p is solvable.
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7.1 The different ideal
Let L/K be number fields. Recall that TrL/K = (·, ·)L/K : L× L→ K is a perfect pairing.

Definition 7.4. If I is a fractional ideal of L the dual I∨ under the trace pairing is defined as

I∨ = {x ∈ L|(x, I)L/K ⊂ OK}

Proposition 7.5. 1. The dual O∨L is a fractional ideal of L.

2. For any fractional ideal I, the dual I∨ is a fractional ideal and I∨ = I−1O∨L.

3. Have I∨∨ = I.

Proof. (1): Let α1, . . . , αn be in OL such that they are a basis of L over K and such that OL ⊃ ⊕αiOK .
Then

O∨L ⊂ (⊕αiOK)∨

and if
∑
uiαi ∈ ⊕Kαi = L is in O∨L then we see that

((αi, αj)L/K)1≤i,j≤n(ui)1≤i≤n ∈Mn×1(OK)

so
∑
uiαi ∈ det((αi, αj)L/K)−1OK . We conclude that O∨L is noetherian.

Moreover, since (OL,OL)L/K ⊂ OK it follows that OL ⊂ O∨L so O∨L is a fractional ideal of L as desired:
indeed, it is a noetherian submodule of L of Z-rank at least [L : Q] and so it has exactly this Z-rank.

(2): Note that x ∈ I∨ iff (xI,OL) ⊂ OK iff (xIOL,OL) ⊂ OK iff xI ⊂ O∨L iff x ∈ I−1O∨L.
(3): Straightforward.

Definition 7.6. Let L/K be number fields. The different is the (fractional) ideal DL/K = (O∨L)−1.

Remark 11. Since TrL/K(OL) ⊂ OK it follows that OL ⊂ O∨L and so DL/K ⊂ OL is an ideal.

Example 7.7. In class I worked out the example of quadratic extensions to see that DQ(
√
m)/Q = (2

√
m) if

m ≡ 2, 3 (mod 4).

Lemma 7.8. Suppose OL = OK [α] where α has minimal polynomial f(X) ∈ OK [X]. Then

DL/K = (f ′(α)).

(More generally DL/K = (f ′α(α) | α ∈ OL st L = K(α)).)

Proof. This is a standard result. See, e.g., Theorem 3.7 in http://www.math.uconn.edu/~kconrad/blurbs/
gradnumthy/different.pdf where it’s only for Z but works for OK .

Example 7.9. For m ≡ 1 (mod 4) we saw that O = Z[(1 +
√
m)/2] with α = (1 +

√
m)/2 having minimal

polynomial X2 −X − (m− 1)/4. Then

DQ(
√
m)/Q = (2α− 1) = (

√
m).

Lecture 28
2018-03-28

Theorem 7.10. Let L/K be a finite extension of number fields and q/p prime ideals.

1. vq(DL/K) ≥ eq/p − 1 and

2. q/p is ramified if and only if q | DL/K .
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Proof. (1): This is vacuous if q/p is unramified so suppose otherwise. Write e = eq/p in which case pOL =
qe−1a where a and p have the same prime factors in OL. Note that vq(DL/K) ≥ e − 1 iff DL/K ⊂ qe−1

iff q−(e−1) ⊂ O∨L iff TrL/K(q−(e−1)) ⊂ OK iff pTrL/K(q−(e−1)) ⊂ p. Since TrL/K is trivial on K this is
equivalent to TrL/K(pq−(e−1)) ⊂ p iff TrL/K(a) ⊂ p.

We’ll show that if α ∈ a then TrL/K(α) = 0 in kp. Let M be the matrix of multiplication by α with
respect to any K-basis of L. Then Me is the matrix of multiplication by αe. But αe ∈ ae ⊂ p and so αe ≡ 0
(mod p). But thenMe = 0 as a matrix over kp and soM mod p has all eigenvalues equal to 0 which implies
that

TrL/K(α) = TrM = 0 mod p

as desired.
(2): Suppose now that q | DL/K . We need to show that q/p is ramified. We will only show this in the

case when OL = OK [α] for some α ∈ OL. For the general case, remark that

DL/KOLq
= DLq/Kp

and therefore q | DL/K iff q | DLq/Kp
. In the local setting it is a consequence of Hensel’s lemma that OLq

can always be written as OKp
[α] for some α.

Suppose, therefore, that OL = OK [α] and α has minimal polynomial f(X) ∈ OK [X]. Then we proved
last time that DL/K = (f ′(α)). If q | DL/K then f ′(α) ≡ 0 (mod q).

Let f(X) =
∏r
i=1 gi(X)

ei in kp[X] where gi(X) are distinct irreducible polynomials. Then

pOL =
∏

qeii

where qi = pOL + (gi(α))OL.
Since f(α) = 0 ≡ 0 (mod q) it follows that gi(α) ≡ 0 (mod q) and we may arrange so that g1(α) ∈ q

which implies that q = q1. If q/p were unramified then e1 = 1. In this case the fact that f ′(α) ≡ 0 (mod q)
implies that g′i(α) = f ′(α) ≡ 0 (mod q). But this would contradict the fact that g1(X) is a separable
polynomial.

In fact one can pin down the actual power of q in DL/K .

Theorem 7.11. With the notation of the previous theorem:

vq(DL/K) =
∑
`≥1

(|Dq/p,`| − 1).

We didn’t prove this as most naturally it’s proven in the local setting, again using Hensel’s lemma.
However, I gave the following consequence.

Corollary 7.12. If q/p is “tamely ramified”, i.e., p - eq/p (where q/p/p) then vq(DL/K) = eq/p − 1.

Proof. In this case Iq/p has size eq/p coprime to p and so Pq/p = Sylp(Iq/p) = {1} and the higher ramification
filtration trivializes for ` ≥ 2. Therefore

vq(DL/K =
∑
`≥1

(|Dq/p,`| − 1) = |Iq/p| − 1 = eq/p − 1.

8 Dirichlet series, ζ-functions and L-functions

8.1 Formal Dirichlet series
Definition 8.1. A Dirichlet series is, a priori, a formal series

D{an}(s) =
∑
n=1

an
ns
.
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Lemma 8.2.
ζ(s) =

∏
p

1

1− 1
ps

.

Proof. Use the geometric series, open parentheses and unique factorization over Z.

Theorem 8.3 (Möbius inversion). Suppose (an) and (bn) are sequences of complex numbers such that for
all n ≥ 1 we have an =

∑
d|n bd. Then

bn =
∑
d|n

adµ(n/d)

where µ(n) is 0 for n not square free and (−1)k if n is square free with k prime factors.

Proof. Note that if D(an)(s)D(bn)(s) = D(cn)(s) then cn =
∑
d|n adbn/d. The relation in the problem can be

written asD(an)(s) = ζ(s)D(bn)(s) and soD(bn)(s) = D(an)(s)/ζ(s) so it suffices to show that 1/ζ(s) = Dµ(s).
But this is immediate as

1/ζ(s) =
∏(

1− 1

ps

)
=
∑
n

µ(n)

ns
.
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8.2 Analytic properties of Dirichlet series
Lemma 8.4. If At =

∑t
n=1 an = O(tr) for some real number r then the Dirichlet series

∑ an
ns converges on

Re(s) > r and is holomorphic in that region.

Proof. If |At| ≤ Btr for some B then

|
t∑

n=1

an
ns
| = |

t∑
n=1

An −An−1

ns
|

= |At
ts
−A1 +

t−1∑
n=1

An

(
1

ns
− 1

(n+ 1)s

)
|

≤ Btr−Re s + |A1|+B

t−1∑
n=1

nr
∣∣∣∣ 1

ns
− 1

(n+ 1)s

∣∣∣∣
≤ Btr−Re s + |A1|+B|s|

t−1∑
n=1

nr−Re s−1

≤ Btr−Re s + |A1|+B|s|+B|s|
(

(t− 1)r−Re s − 1

r − Re s

)
dx

and this converges when Re s > r as desired. Holomorphicity follows from the fact that this convergence is
uniform on compact sets.

Example 8.5. The Riemann zeta function ζ(s) is holomorphic in the region Re s > 1 while
∑
n≥1

(−1)n

ns is
holomorphic when Re s > 0.
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8.3 Counting ideals and the Dedekind zeta function
Let K be a number field.

Definition 8.6. The Dedekind ζ-function is

ζK(s) =
∑
I⊂OK

1

||I||s
.

Writing c(n) for the number of ideals of norm exactly n this becomes

ζK(s) =

∞∑
n=1

c(n)

ns
.

To establish the analytic properties of ζK(s) we want to study the partial sums

nK(x) =
∑
n≤x

c(n),

where nK(x) is the number of ideals I with ||I|| ≤ x. Over Q, this is easy: all ideals are of the form nZ and
so the number nQ(t) = btc = t− small error.

Theorem 8.7. Let K be a number field and C ∈ Cl(K). Let nC(t) be the number of ideals of K in the class
C of norm at most t. Then

nC(t) = κt+O(t1−
1
n )

where n = [K : Q] and

κ =
2r(2π)sRK

w
√
|disc(K)|

Here r is the number of real embeddings, 2s is the number of torsion embeddings, w is the number of roots

of unity in K and RK , the regulator, is the volume of log ι(O×K) in ∆ = ker(Rr+s
∑
→ R).

Summing over C ∈ Cl(K) we get the estimate

nK(t) = hKκt+O(t1−1/n)

Example 8.8. When K = Q(i) then nK(x) is the number of a = m + ni with norm |a|2 = m2 + n2 ≤ x,
up to the units ±1,±i. This is approximately the area of the quarter circle of radius

√
x, i.e., πx/4. This

equals 2π/(w
√
|dK |) as w = 4 and dK = −4.

Example 8.9. When K = Q(
√

2) we expect

nK(x) ≈ 22 · log(
√

2 + 1)

2
√

8
=

log(
√

2 + 1)√
2

.

Embed K ↪→ K∞ ∼= R2 via ι(a + b
√

2) = (a + b
√

2, a − b
√

2). Then NK/Q(z) =
∏
ι(z) and therefore

|NK/Q(z)| ≤ x iff ι(z) = (a, b) with |ab| ≤ x.
Recall that O×K = ±(

√
2 + 1)Z = ±αZ. Note that every z ∈ K∞ is equivalent up to ι(O×K) to an element

of the first quadrant. We conclude that K∞/ι(O×K) has as fundamental domain the cone in the first quadrant
between the ray containing the unit ι(1) and the ray containing the unit ι(α2).
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It suffices to estimate the number of lattice points in OK inside the intersection of the two regions.

Remark 12. I also explained that if we choose volv Haar measures on K×v which are self-dual, i.e., they
satisfy the Plancherel formula in Fourier analysis, then

vol(A1
K/K

×) =
2r(2π)sRKhK

w
√
|dK |

.

Indeed, one has exact sequences

1→ K1
∞

∏
O×v /O×K → A1

K/K
× → Cl(K)→ 1

and
1→ {±1}r(S1)s

∏
O×v /µ∞(K)→ K1

∞

∏
O×v → Rr+s−1/ log(O×K)→ 0

and so

vol(A1
K/K

×) = vol({±1}r(S1)s
∏
O×v ) vol(Rr+s−1/ log(O×K)) vol(Cl(K))/ vol(µ∞(K)).

Finally, vol({±1}) = 2, vol(S1) = 2π, vol(Cl(K)) = hK , vol(µ∞(K)) = w, vol(Rr+s−1/ log(O×K)) = RK , and
for the self-dual Haar measures

vol(
∏
O×v ) =

∏
volv(O×v ) =

∏
||DKv/Qp ||

−1/2 = ||DK/Q||−1/2 = |dK |−1/2.
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Lemma 8.10. Fix J ∈ C−1. There is a bijection between the sets {I ∈ C|||I|| ≤ t} and {(α) ⊂ J ||NK/Q(α) ≤
t||J ||}.

Proof. The maps are I 7→ IJ which has to be principal (1 in Cl(K)) and (α) 7→ (α)J−1 which lies in C.
Indeed, ||IJ || = ||I||||J || ≤ t||J || and ||(α)J−1|| = ||(α)||||J ||−1 = |NK/Q(α)|||J ||−1 ≤ t.

Proof of the theorem. By the previous lemma we only need to count principal ideals (α) ⊂ J with ||(α)|| ≤
t||J || and the difficulty consists in the fact that (α) determines the element α up to a unit.

Recall the map K → K∞ = Rn given by ι : x 7→ (σi(x),Re τi(x), Im τi(x)) where σi are the real
embeddings and τi, τ i are the complex embeddings. Then ι(J) ⊂ Rn is a lattice. Further recall the maps
log : Rn − 0 → Rr+s given by (xi) 7→ (log(|x1|), . . . , log(|xr|), log(x2

r+1 + x2
r+2), . . .) and

∑
: Rr+s → R

given by adding the coordinates. Then for every x ∈ K× one has
∑

log ι(x) = log |NK/Q(x)|. Remark that
ker log = {±1}r(S1)s and that the kernel of log ◦ι is the group of roots of unity in K.

Consider F a fundamental parallelotope of log ι(O×K) ⊂ ∆ ⊂ Rr+s, i.e., the span of a basis of log ι(O×K)
with coefficients in [0, 1). Also let D ⊂ Rr+s the region spanned by F and the ray pointing in the direction
of (1, . . . , 1, 2, . . . , 2) (where 1 appears r times and 2 appears s times).
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Note that nC(t) is the number of {(α) ⊂ J ||NK/Q(α)| ≤ t||J ||} ∼= {α ∈ J ||NK/Q(α) ≤ t||J ||}/O×K and
via ι this becomes

nC(t) = w−1|{ι(α) ∈ ι(J)|N(ι(α)) ≤ t||J ||}/ι(O×K)|

because | ker log ◦ι| = w.
Further composing with log : Rn → Rr+s we see that Rr+s/ log ι(O×K) ∼= D and, since ker log ι consists of

roots of unity it follows that

{ι(α) ∈ ι(J)|N(ι(α)) ≤ t||J ||}/ι(O×K) ∼= {ι(α) ∈ ι(J)|N(ι(α)) ≤ t||J ||, log ι(α) ∈ D}

Let Dλ ⊂ D consist of tuples (x1, . . . , xr+s) ∈ D with
∑

(xi) ≤ λ. Then N(ι(α)) ≤ t||J || is equivalent to∑
log ι(α) ≤ log(t||J ||) and so, putting everything together,

nC(t) = w−1|{ι(α) ∈ ι(J)|N(ι(α)) ≤ t||J ||, log ι(α) ∈ D}| = w−1|{ι(α) ∈ ι(J)| log ι(α) ∈ Dlog(t||J||)}

Then
nC(t) = w−1|{ι(α) ∈ ι(J) ∩ D′log(t||J||)}| = w−1|ι(J) ∩ log−1Dlog(t||J||)|

We need to estimate nC(t) = w−1|ι(J) ∩ log−1Dlog(t||J||)|.
It is a general analytical statement from the geometry of number that if C is a region in Rn with a “nice”

boundary ∂C and Λ ⊂ Rn is a lattice then

|Λ ∩ xC| = vol(xC)
vol(Λ)

+O

(
vol(∂xC)
vol(∂Λ)

)
= xn

vol(C)
vol(Λ)

+O(xn−1)

(where vol(∂Λ) represents the surface area of the fundamental parallelotope).
We will apply this to Λ = ι(J) and C = log−1Dlog(||J||). First, note that

log−1Dlog(t||J||) =
n
√
t log−1Dlog(||J||)

Indeed, under the log map the region x log−1Dlog(||J||) becomes (log(x), . . . , log(x), 2 log(x), . . . , 2 log(x)) +
Dlog(||J||) which by definition is just Dn log(x)+log(||J||) = Dlog(xn||J||).

Thus

nC(t) = w−1|ι(J) ∩ log−1Dlog(t||J||)|
= w−1|ι(J) ∩ n

√
t log−1Dlog(||J||)|

= w−1 vol(log−1Dlog(||J||))

vol(ι(J))
t+O(t1−1/n)

Claim: For all λ we have
vol(log−1Dλ) = 2rπseλ.

Assuming this claim we compute

vol(log−1Dlog(||J||))

vol(ι(J))
=

2rπs||J ||
2−s||J ||

√
|dK |

and the desired result follows.
Proof of claim. It remains to compute vol log−1Dλ. Consider the map log : K∞ − 0 → Rr+s from

before. Writing (u1, . . . , ur, v1, . . . , vs) for the variables on Rr+s and changing variables xi = εie
ui with
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εi ∈ {±1} and yj = evj/2 cos θj , zj = evj/2 sin θj with θj ∈ [0, 2π] we see that

vol log−1Dλ =

∫
log−1Dλ

∏
dxi

∏
dyjdzj

=

∫
Dλ

∫
{±1}r

∫
(S1)s

2−se
∑
ui+

∑
vj
∏

dθj
∏

dεi
∏

dui
∏

dvj

= 2rπs
∫
Dλ

∫
(S1)s

e
∑
ui+

∑
vj
∏

dui
∏

dvj

Writing t =
∑
ui +

∑
vj ≤ λ and using Fubini we see that

vol log−1Dλ = 2rπs
∫
F

∫ λ

−∞
etdtd volF

= 2rπs vol(F)eλ

as desired since RK = vol(F).
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8.4 The analytic class number formula
Let K be a number field.

Proposition 8.11. ζK(s) converges and is holomorphic for Re(s) > 1.

Proof.

ζK(s) =
∑
I

1

||I||s

=

∞∑
t=1

∑
||I||=t

1

ts

Writing an for the number of ideals of norm n it follows that nK(t) =
∑t
n=1 an = O(t) and convergence

follows from the lemma.

Theorem 8.12 (Analytic Class Number Formula). Let K be a number field.

The Riemann ζ-function ζ(s) can be extended to a meromorphic function on Re s > 0 with a simple pole at
s = 1 and

lim
s→1

(s− 1)ζ(s) = 1

The Dedekind ζ-function ζK(s) can be extended to a meromorphic function on Re s > 1 − 1/[K : Q] with a
simple pole at s = 1 with

lim
s→1

(s− 1)ζK(s) =
2r(2π)shKRK

w
√
|dK |

.

In fact ζK(s) can be extended meromorphically to Re s > 0 with a simple pole only at s = 1.

Proof. Part one. The function f(s) = (1− 21−s)ζ(s) can be written as

f(s) =

∞∑
n=1

(−1)n−1n−s
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for Re s > 1 but the latter is is holomorphic for Re s > 0 by the lemma as
∑t
n=1(−1)n−1 = O(1). This

implies that ζ(s) is meromorphic with poles possibly when 21−s = 1, i.e., when (1 − s) log(2) = 2πik for
some k ∈ Z.

Similarly the function g(s) = (1− 31−s)ζ(s) can be written as

g(s) =

∞∑
n=1

ann
−s

for Re s > 1 where an = 1 unless 3 | n in which case n = −2. Again g(s) makes sense as a holomorphic
function when Re s > 0 and so ζ(s) is meromorphic with poles possibly when 31−s = 1, i.e., when (1 −
s) log(3) = 2πi` for some ` ∈ Z.

Suppose ζ(s) has a pole at some s such that (1−s) log(2) = 2πik and (1−s) log(3) = 2πi`. Then 2` = 3k

and so ` = k = 0 and s = 1. Thus ζ(s) is meromorphic with only possible pole at s = 1. Let’s compute the
residue:

lim
s→1

(s− 1)ζ(s) = lim
s→1

f(s)(s− 1)

1− 21−s

=
f(1)

log(2)

= 1

as
f(1) = 1− 1

2
+

1

3
− 1

4
+ · · · = log(1 + 1) = log(2)

Part two. Recall that for Re s > 1 one has

ζK(s) =

∞∑
n=1

nK(n)− nK(n− 1)

ns

= hKκζ(s) +

∞∑
n=1

nK(n)− nK(n− 1)− κhK
ns

Again by our lemma it follows that ζK(s)− hKκζ(s) is holomorphic for Re(s) > 1− 1/[K : Q] since
t∑

n=1

(nK(n)− nK(n− 1)− κhK) = nK(t)− κhKt = O(t1−1/[K:Q])

This implies that ζK(s)−hKκζ(s) is holomorphic for Re s > 1− 1/[K : Q] and so the same must be true
of ζK(s). For the residue computation note that

lim
s→1

(s− 1)ζK(s) = lim
s→1

(s− 1)(ζK(s)− hKκζ(s)) + hKκ lim
s→1

(s− 1)ζ(s)

= hKκ

as in the first limit one has the product of two functions which are continuous at s = 1.

8.5 Functional equations
Recall the Euler Γ function:

Γ(s) =

∫ ∞
0

xs−1e−xdx

We will use two variants:

ΓR(s) = π−s/2Γ
(s

2

)
ΓC(s) = 2(2π)−sΓ(s)
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Lemma 8.13. 1. Γ(x+ 1) = xΓ(x) and thus

Γ(x− n) =
Γ(x)

(x− 1) · · · (x− n)
.

2. Γ(x) is holomorphic in the region Rex > 0.

3. Γ has no zeros and has simple poles only at negative integers.

4. Γ(n) = (n− 1)! for n ≥ 1.

5. Γ(1/2) =
√
π and Γ(1/2− n) =

(−4)nn!
√
π

(2n)!
.

Proof. (1): Integration by parts and induction.
(2): The integral converges absolutely and uniformly in compact sets when Rex > 1 so it is holomorphic

in this region.
(3): Uses more complex analysis than what I’m willing to do. The part about poles follows from part

(1).
(4): Induction.
(5): Using x = y2 we get

Γ(1/2) =

∫ ∞
0

x−1/2e−xdx = 2

∫ ∞
0

e−y
2

dy =

∫ ∞
−∞

e−y
2

dy =
√
π.

The formula at 1/2− n follows from part (1).

Theorem 8.14. Let K be a number field with r1 real and 2r2 complex places. Write

Λ(s) = |dK |s/2ΓR (s)
r1 ΓC(s)r2ζK(s)

Then Λ(s) = Λ(1 − s) when Re s ∈ (0, 1) in which case ζK(s) and ζK(1 − s) make sense. Defining Λ(s) by
Λ(s) for Re s > 0 and Λ(1 − s) for Re s < 1 we obtain the meromorphic continuation of ζK(s) to all of C
with a simple pole at s = 1.

Proof. Not given. Follows from the Poisson summation formula for Fourier transforms. Perhaps later I’ll
give the proof for the Riemann zeta function.

Corollary 8.15 (A basic version of Birch and Swinnerton-Dyer). The function ζK has a zero of order
r1 + r2 − 1 at s = 0 and ζK(s) has the following Taylor expansion around s = 0:

ζK(s) = −hKRK
wK

sr1+r2−1 +O(sr1+r2).

Proof. Using the previous lemma on the Γ-function we get ΓR(s) = 2π
s ΓR(s + 2) and ΓC(s) = 2π

s ΓC(s + 1)
have simple poles at s = 0. These formulae transform the functional equation into

|dK |s/2
(2π)r1

sr1
ΓR (s+ 2)

r1 (2π)r2

sr2
ΓC(s+ 1)r2ζK(s) = |dK |(1−s)/2ΓR (1− s)r1 ΓC(1− s)r2ζK(1− s)

Recall that ζK has a simple pole at s = 1 and so ζK(1−s) =
f(s)

s
where f(0) = −2r1(2π)r2hKRK

w
√
|disc(K)|

. Therefore

ζK(s) =
sr1+r2−1f(s)|dK |(1−2s)/2ΓR (1− s)r1 ΓC(1− s)r2

2r1+r2πr1+r2ΓR (s+ 2)
r1 ΓC(s+ 1)r2
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In this expression the only factor vanishing at s = 0 is sr1+r2−1 and so the order of vanishing is as desired.
Taking derivatives at 0 we get

ζ
(r1+r2−1)
K (0)

(r1 + r2 − 1)!
=

f(0)
√
|dK |ΓR(1)r1ΓC(1)r2

2r1+r2πr1+r2ΓR(2)r1ΓC(1)r2

=
f(0)

√
|dK |π−r2

2r1+r2πr1+r2π−r1π−r2

= −2r1(2π)r2hKRK
2r1+r2πr2w

= −hKRK
w

using ΓR(1) = π−1/2Γ(1/2) = 1, ΓC(1) = 2(2π)−1 = π−1 and ΓR(2) = π−1.
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8.6 L-functions of characters
Definition 8.16. Let G be a finite abelian group. A character of G is a group homomorphism χ : G→ C×.

Proposition 8.17. The set Ĝ of all characters of G is a finite abelian group.

1. If G and H are finite abelian groups then Ĝ×H ∼= Ĝ× Ĥ.

2. There is a non-canonical isomorphism G ≈ Ĝ.

3. There is a canonical isomorphism ̂̂
G ∼= G given by g 7→ (χ 7→ χ(g)).

Proof. Part one: If χ ∈ Ĝ×H let χ1(g) = χ(g, 1) and χ2(h) = χ(1, h). Then χ(g, h) = χ1(g)χ2(h) and we
get a map Ĝ×H → Ĝ× Ĥ given by χ 7→ χ1 × χ2. This is clearly an isomorphism.

Part two: If G = Z/nZ then every χ ∈ Ĝ is uniquely defined by χ(1) ∈ µn and so Ẑ/nZ ∼= µn. But
µn ≈ Z/nZ identifying ζkn with k for a choice of primitive n-th root ζn. The result now follows from this
and part one.

Part three: The given map is a canonical homomorphism. Suppose it is not injective. Then there exists
g ∈ G such that χ(g) = 1 for every χ ∈ Ĝ. But there is a nontrivial character of 〈g〉 sending g to a primitive
root of 1 of order equal to the order of g. This defines a character G→→ 〈g〉 → C× which is not trivial on g.
Finally, we have an injective homomorphism between finite sets of the same size (from part two) and so it
is an isomorphism.

Definition 8.18. A character mod N is a character of the group (Z/NZ)×, i.e., a homomorphism χ :
(Z/NZ)× → C×. The L-function of χ is the Dirichlet series

L(χ, s) =
∑

(n,N)=1

χ(n)

ns

which converges to a holomorphic function on Re s > 1.

Proposition 8.19. If χ is a character mod N which is not the trivial character then

1.
∑
k∈(Z/NZ)× χ(k) = 0

2. L(χ, s) is analytic when Re s > 0.
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Proof. If G is any finite abelian group and χ : G→ C× is any nontrivial homomorphism then
∑
g∈G χ(g) = 0.

Indeed, χ 6= 1 implies that χ(h) 6= 1 for some h ∈ G. Then∑
g∈G

χ(g) =
∑
gh∈G

χ(gh)

= χ(h)
∑
g∈G

χ(g)

and so the sum must vanish.
Look at the partial sums At =

∑t
n=1 χ(t). The sum over representatives of Z/NZ is 0 and so |At| ≤∑

|χ(k)| = ϕ(N) is bounded. Thus L(χ, s) is holomorphic for Re s > 0 by the lemma from lecture 29.
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8.7 Euler products and factorizations of Dedekind zeta functions
Proposition 8.20. Have

ζ(s) =
∏
p

(
1− 1

ps

)−1

ζK(s) =
∏
p

(
1− 1

||p||s

)−1

L(χ, s) =
∏
p-N

(
1− χ(p)

ps

)−1

where p is a prime and p is a prime ideal.

Proof. Follows from unique factorization in Dedekind domains and the fact that χ is a homomorphism.

Proposition 8.21. Suppose G is a finite abelian group and N > 1 an integer.

1. If χ ∈ Ĝ then ∏
g∈G

(X − χ(g)) = (Xa − 1)b

where a = | Imχ| is the order of χ in Ĝ and b = | kerχ| = |G|/a.

2. If p ∈ (Z/NZ)× has order exactly r then∏
χ∈ ̂(Z/NZ)×

(X − χ(p)) = (Xr − 1)ϕ(N)/r

Proof. Part one: Since χ is a homomorphism, Imχ ⊂ C× is a subgroup and thus isomorphic to µa for
a = | Imχ|. Now ∏

g∈G
(X − χ(g)) =

∏
g∈kerχ

∏
h∈G/ kerχ

(X − χ(gh))

=
∏

h∈G/ kerχ

(X − χ(h))b

=
∏

ζ∈Imχ∼=µa

(X − ζ)b

= (Xa − 1)b

48



Finally, the statements about a being the order of χ in Ĝ and ab = |G| are immediate from the fact that
Imχ = µa and the first isomorphism theorem.

Part two: Let G = (Z/NZ)× and ψp ∈
̂̂
G given by ψp(χ) = χ(p) for any ψ ∈ Ĝ. Then

∏
χ∈Ĝ

(X − χ(p)) =∏
χ∈Ĝ

(X − ψp(χ)). We will apply part one to the group Ĝ and the element ψp and deduce that this product

is (Xa − 1)b where a = | Imψp| is the order of ψp and b = | kerψp| = ϕ(N)/a. But the order of ψp in ̂̂G is
the same as the order r of p in G.

Theorem 8.22. Suppose K = Q(ζN ) for N > 1. Then

ζK(s) =
∏
p|N

(
1− 1

||p||s

)−1 ∏
χ∈ ̂(Z/NZ)×

L(χ, s)

where

ζ(s) =
∏
p|N

(
1− 1

ps

)−1

L(1, s)

for the trivial mod N character.

Proof. We only need to show that

∏
p-N

(
1− 1

||p||s

)−1

=
∏

χ∈ ̂(Z/NZ)×

L(χ, s)

which is equivalent to ∏
p-N

(
1− 1

||p||s

)−1

=
∏

χ∈ ̂(Z/NZ)×

∏
p-N

(
1− χ(p)

ps

)−1

For this it suffices to show that ∏
χ∈ ̂(Z/NZ)×

(
1− χ(p)

ps

)
=
∏
p|p

(
1− 1

||p||s

)

Let r be the number of prime ideals of K above p and f the inertia index of p (independent of p | p since

K/Q is Galois). Then the RHS is
(

1− 1

pfs

)r
and so it suffices to show that

∏
χ∈ ̂(Z/NZ)×

(ps − χ(p)) = (pfs − 1)r

By a previous proposition the LHS is (pas−1)b where a is the order of p in (Z/NZ)× and b = ϕ(N)/a. Thus
is suffices to show that a = f .

But f is the degree of any irreducible factor of the cyclotomic polynomial ΦN in Fp[X] (since OQ(ζN ) =
Z[ζN ] so there is no restriction on p). Such an irreducible factor has as roots primitive N -th roots of 1 which
would then be defined over Fpf (and no smaller subfield) and the result follows as on the homework from
the fact that F×

pf
∼= Z/(pf − 1)Z and so N | pf − 1 (but not so for smaller exponents) which is equivalent to

f being the order a of p.

Corollary 8.23. If χ is a nontrivial character mod N then L(χ, 1) 6= 1.
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Proof. From the previous theorem we get

(s− 1)ζK(s) = (s− 1)ζ(s)
∏
p-N

(
1− 1

ps

)∏
p|N

(
1− 1

||p||s

)−1 ∏
χ 6=1

L(χ, s)

Taking lim
s→1

we get that
∏
χ 6=1 L(χ, 1) is nonzero.

8.8 Analytic density of primes
Lemma 8.24. Let K/Q be a number field. As s→ 1+ we have the estimate∑

p

1

||p||s
= log ζK(s) +O(1) = − log(s− 1) +O(1)

Proof. We have

log ζK(s) = log
∏
p

(
1− 1

||p||s

)−1

= −
∑
p

log

(
1− 1

||p||s

)
=
∑
p

∑
n≥1

1

n||p||ns

=
∑
p

1

||p||s
+
∑
p

∑
n≥2

1

n||p||ns

and so ∣∣∣∣∣log ζK(s)−
∑
p

1

||p||s

∣∣∣∣∣ ≤∑
p

∑
n≥2

1

n||p||ns

<
∑
p

1

||p||s(||p||s − 1)

<
∑
p

2

||p||2s

< 2ζK(2s)

since ||p||s > 2 and so ||p||s − 1 > ||p||s/2.
The first estimate then follows from the fact that ζK(s) is holomorphic around s = 2. The second estimate

follows from the fact that ζK(s) has a simple pole at s = 1.
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Definition 8.25. Suppose P is a set of prime ideals of K/Q. The set P is said to have natural density
d(P) if

d(P) = lim
x→∞

|{p ∈ P|||p|| < x}|
|{p|||p|| < x}|

exists.
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The set P is said to have Dirichlet density δ(P) if

δ(P) = lim
s→1+

∑
p∈P ||p||−s∑
p ||p||−s

= lim
s→1+

∑
p∈P ||p||−s

− log(s− 1)

exists.
Note that, if they exist, then δ(P) ≤ 1 and d(P) ≤ 1.

Proposition 8.26. 1. If P is finite then d(P) = δ(P) = 0.

2. If P ⊂ Q then δ(P) ≤ δ(Q).

3. Have δ(P ∪Q) ≤ δ(P) + δ(Q) with equality when δ(P ∩Q) = 0 (e.g., when the intersection is finite or
empty).

4. If d(P) exists and equals α ∈ [0, 1] then δ(P) = d(P) = α.

Proof. The only part requiring work is the last one, but we’ll skip that since it reduces to basic, but
unenlightening calculus.

8.9 Primes in arithmetic progression
The goal of this section is the following theorem.

Theorem 8.27 (Dirichlet’s theorem on primes in arithmetic progressions). Let n ≥ 2 and a coprime to n.
The set Pa,n of primes p ≡ a (mod n) has density (either natural or Dirichlet) equal to 1/ϕ(n). In particular
the set Pa,n is infinite.

Proof. We will only show that the Dirichlet density is 1/ϕ(n), which already implies that Pa,n is infinite.
First, writing G = (Z/nZ)× note that

∑
χ∈Ĝ

χ(a−1p) =

{
ϕ(n) p ≡ a (mod n)

0 p 6≡ a (mod n)

for any prime p. Thus

ϕ(n)
∑

p∈Pa,n

1

ps
=
∑
p

∑
χ∈Ĝ

χ(a−1p)

ps

For s→ 1+ we have ∑
χ∈Ĝ

χ(a−1) log(L(χ, s)) = −
∑
χ∈Ĝ

∑
p

χ(a−1) log

(
1− χ(p)

ps

)

=
∑
χ,p

∑
n≥1

χ(a−1)χ(p)n

npns

= ϕ(n)
∑

p∈Pa,n

1

ps
+
∑
χ,p

∑
n≥2

χ(a−1)χ(p)n

npns

using the previous identity. The term
∑
χ,p

∑
n≥2

χ(a−1)χ(p)n

npns
is holomorphic around s = 1 by an argument

similar to the estimate from the previous section.
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We conclude that for s→ 1+ we have

ϕ(n)
∑

p∈Pa,n

1

ps
=
∑
χ∈Ĝ

χ(a−1) log(L(χ, s)) +O(1)

= log(L(1, s)) +
∑
χ 6=1

χ(a−1) log(L(χ, s))

Now
log(ζ(s)) = log(L(1, s))−

∑
p|n

log

(
1− 1

ps

)
= log(L(1, s)) +O(1)

around s = 1 and so

δ(Pa,n) = lim
s→1+

∑
p∈Pa,n p

−s

− log(s− 1)

= lim
s→1+

ϕ(n)−1 log(ζ(s)) + ϕ(n)−1
∑
χ 6=1 log(L(χ, s)) +O(1)

− log(s− 1)

= lim
s→1+

ϕ(n)−1 log(ζ(s)) +O(1)

− log(s− 1)

=
1

ϕ(n)

Here we used that for χ 6= 1, L(χ, 1) 6= 0 and so log(L(χ, 1)) = O(1).
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8.10 The Chebotarëv density theorem
First, it’s read Chebotaryóv.

Let L/K be a finite Galois extension of number fields. Recall that for q | p prime ideals of L and K
one has Frobq/p ∈ GL/K well-defined up to an element of inertia Iq/p. If q/p is unramified then Frobq/p

is uniquely defined. Moreover, if q′ = σ(q) is some other prime ideals above p where σ ∈ GL/K then
Frobq′/p = σ Frobq/p σ

−1 and so one gets a well-defined conjugacy class

Frobp = {Frobq/p ∈ GL/K |q | p}

Theorem 8.28 (The Chebotarëv density theorem). Suppose C ⊂ GL/K is a conjugacy class. Then the set
PC of prime ideals p of K such that the conjugacy class Frobp is C has both natural and Dirichlet density

δ(PC) =
|C|
|GL/K |

Proposition 8.29. The Dirichlet theorem on primes in arithmetic progressions is equivalent to Chebotarev
for Q(ζn)/Q.

Proof. Indeed, taking L = Q(ζn) and K = Q then GL/K is abelian ∼= (Z/nZ)× and so every conjugacy
class consists of one element. Taking C = a ∈ (Z/nZ)× we deduce that the density of primes p such that
Frobp = a is 1/ϕ(n). But Frobp is p ∈ (Z/nZ)×.

Proposition 8.30. If Chebotarev is true for the abelian Galois extension M/K then it is true for L/K for
any M/L/K.
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Proof. Let c ∈ GL/K with preimage {c1, . . . , cd} ⊂ GM/K where d = [M : L]. Then

δ({p|Frobp = c}) = δ({p|Frobp ∈ {c1, . . . , cd}})

=
∑

δ({p|Frobp = ci})

=
d

|GM/K |

=
1

|GL/K |

as desired.

Example 8.31. 1. If P (X) ∈ Z[X] is monic irreducible then Chebotarev implies that the density of p
such that P (X) mod p splits as a product of distinct irreducible polynomials of degrees (d1, . . . , dk)
is equal to the probability that an element of GK/Q ⊂ Sn has cycle type (d1, . . . , dk). I gave as an
example 2017s-m30820/handouts/galQ.pdf.

2. The density of primes p such that ΦN (X) mod p factors as a product of irreducible polynomials of
degree d | ϕ(N) is nd

ϕ(N) where nd is the number of elements of degree d in (Z/NZ)×.

3. X3− 2 stays irreducible modulo 1/3 of primes, splits into linear factors modulo 1/6 of the primes, and
factors as a linear times an irreducible quadratic modulo 1/2 of the primes.
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I proved in class Chebotarev using a step-by-step reduction that can be found, e.g., in Fried-Jarden’s Field
arithmetic. I’ll attach some handwritten notes, but here are the ideas:

1. Extensions of the form Q(ζn)/Q follow from Dirichlet.

2. Analogously one gets general cyclotomic extensions of the form K(ζn)/K.

3. From the previous proposition one deduces Chebotarev for subextensions of cyclotomic extensions.

4. I proved that given any L/K and any m ≥ 1 there exists M/K cyclic of degree m and cyclotomic (i.e.,
inside some K(ζM )) such that M ∩ L = K.

5. I used this to show Chebotarev for cyclic extensions L/K.

6. I then used the fact that the density of primes p such that ||p|| > ||p∩Q|| is 0 and deduced Chebotarev
for all L/K.
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8.11 Fourier transforms
If G is an abelian topological group we denote by Ĝ the group of homomorphisms χ : G→ S1 ⊂ C×. Then
Ĝ is a topological abelian group, called the Pontryagin dual of G. A basis for the topology on Ĝ is given by
sets of the form {χ : G→ S1 | χ(K) ⊂ U} where K ⊂ G is compact and U ⊂ S1 is open.

I mentioned that if G is compact then Ĝ is discrete, and if G is discrete then Ĝ is compact.

Example 8.32. 1. If G = Z/nZ then Ĝ ∼= µn canonically, and noncanonically it is Ĝ ≈ Z/nZ associating
to a ∈ Z/nZ the character χa(x) = ζax for a choice of ζ ∈ µn.
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2. If G = Z then Ĝ ∼= S1 is compact.

3. If G = R then Ĝ ≈ R associating to a ∈ R the character χa(x) = e2πiax.

4. If G = S1 compact then Ĝ ∼= Z is discrete, associating to a ∈ Z the character χa(x) = xa.

5. If G = C then Ĝ ≈ C associating to a ∈ C the character χa(z) = e4πiRe(az).

If G is locally compact we choose a Haar measure µG. For a Schwarz function f : G → C we define the
Fourier transform f̂ : Ĝ→ C by

f̂(χ) =

∫
G

f(g)χ(g)dµG,

a Schwarz function on Ĝ. Note that f̂ depends on µG.
Some special cases:

1. Let G = Z/nZ with µG the discrete measure. With Ĝ ≈ G from above get f̂ : Z/nZ→ C given by

f̂(x) =
∑
y

f(y)e2πixy/n.

2. Let G = R with µG the measure dx. With Ĝ ≈ G from above get f̂ : R→ C given by

f̂(x) =

∫ ∞
−∞

f(y)e2πixydy.
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The L2-norm of an L2-integrable function f : G→ C is

||f ||2 =

∫
G

|f(g)|2dµG.

When G = Z/nZ and µG is the discrete measure then

||f ||2 =
∑
x

|f(x)|2.

Proposition 8.33. Let f : Z/nZ→ C be a function.

1. (Double Fourier) ̂̂f(x) = nf(−x).

2. (Plancherel identity) ||f̂ ||2 = n||f ||2.

3. f̂(x) = f̂(−x).

Proof. We begin by remarking that if ζ ∈ µn then

∑
a∈Z/nZ

ζa =

{
0 ζ 6= 1

n ζ = 1
,

which can be proven using the geometric series.
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(1): Write ζ = e2πi/n. Then ̂̂
f(x) =

∑
y

f̂(y)ζxy

=
∑
y

∑
z

f(z)ζxy+yz

=
∑
z

f(z)
∑
y

(ζx+z)y

The sum over y is then 0 unless x+ z = 0 mod n in which case it is n and sô̂
f(x) = nf(−x)

as desired.
(2): We compute

||f̂ ||2 =
∑
y

|f̂(x)|2

=
∑
y

f̂(y)f̂(y)

=
∑
y

∑
a,b

f(a)f(b)ζay−bz

=
∑
a,b

f(a)f(b)
∑
y

(ζa−b)y

Again the sum over y is 0 unless a = b in which case it is n, and so

||f̂ ||2 = n
∑
a

f(a)f(a) = n||f ||2.

(3): This is straightforward.

8.12 Gauss sums of characters
A character χ : (Z/NZ)× → C× also gives a composite character χ : (Z/NdZ)× → (Z/NZ)× → C× for any
d. Thus a character χ mod N is also a character mod Nd and so given χ there is an ambiguity on what
group it is a character of. In particular, given χ mod N there might exists d | N such that χ comes from a
character mod d. For example the trivial character always comes from a character mod 1.

Definition 8.34. The conductor fχ of a character χ is the smallest integer such that χ is a character
mod fχ. A character χ : (Z/nZ)× → C× is said to be primitive if n is the conductor of χ.

For example the character mod 8 taking 1 and 5 to 1 and 3 and 7 to −1 in fact comes from the character
mod 4 taking k to (−1)(k−1)/2 and so has conductor 4.

Proposition 8.35. Suppose χ : (Z/nZ)× → C× is a primitive character. We extend by 0 to a function
χ : Z/nZ→ C. Then

χ̂(x) = χ(x)χ̂(1).

Proof. If (x, n) = 1 then {xy|y ∈ Z/nZ} = Z/nZ and so

χ̂(x) =
∑
y

χ(y)ζxy

=
∑
z

χ(zx−1)ζz

= χ(x)−1χ̂(1).
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The result follows from: χ(x)χ(x) = |χ(x)|2 = 1 because Imχ consists of roots of unity.
If (x, n) = d > 1 then the RHS vanishes as χ(x) = 0. Write x = dk and n = gm. The character χ has

conductor n and so it does not come from a character modulo m. In other words χ is not trivial on the
kernel 1 +mZ/nZ of the quotient (Z/nZ)× →→ (Z/mZ)×. Thus for some u ≡ 1 (mod m) and coprime to n
the character χ(u) 6= 1. But then multiplying by u coprime to n permutes terms so

χ̂(x) =
∑
y

χ(y)ζxy

=
∑
y

χ(yu)ζxyu

= χ(u)
∑
y

χ(y)ζxyu

Since u ≡ 1 (mod m) it follows that ζxyu = e2πidkyu/dm = e2πikyu/m = e2πiky/m = ζxy which implies that

χ̂(x) = χ(u)
∑
y

χ(y)ζxy

= χ(u)χ̂(x)

Therefore χ̂(x) = 0 as χ(u) 6= 1.

Definition 8.36. Suppose χ : (Z/nZ)× → C× is a primitive character extended by 0 to Z/nZ → C. The
Gauss sum of χ is

τ(χ) = χ̂(1).

Proposition 8.37. 1. τ(χ) = χ(−1)τ(χ).

2. |τ(χ)| =
√
n.

Proof. (1):

τ(χ) = χ̂(1)

= χ̂(−1)

= χ(−1)χ̂(1)

= χ(−1)τ(χ).

(2): From Plancherel we know that ||χ||2 = n||χ||2. But the LHS is

||χ̂||2 =
∑
|χ̂(x)|2 =

∑
|χ(x)χ̂(1)|2 = |τ(χ)|2

∑
|χ(x)|2 = ϕ(n)|τ(χ)|2

and the RHS is
n||χ||2 = n

∑
|χ(x)|2 = nϕ(n).

Example 8.38. 1. If χ3 =
( ·

3

)
then τ(χ3) = ζ3 − ζ2

3 = i
√

3.

2. More generally, if Imχ = {−1, 1} then χ = χ and we conclude that

τ(χ) = χ(−1)τ(χ)

If χ(−1) = 1 then τ(χ) ∈ R and if χ(−1) = −1 then τ(χ) ∈ iR.

3. If χ =
( ·
p

)
for an odd prime p then χ is primitive (Z/pZ)× → C× with image {−1, 1}. If p ≡ 1 (mod 4)

then χ(−1) = 1 so τ(χ) ∈ R. If p ≡ 3 (mod 4) then χ(−1) = −1 so τ(χ) ∈ iR.
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8.13 Special values of L-functions at non-positive integers
The Bernoulli numbers Bn are the coefficients

t

et − 1
=
∑

Bn
tn

n!

If χ is a character then Bn,χ is defined by

fχ∑
a=1

teat

efχt − 1
=
∑
n≥0

Bn,χ
tn

n!

with

B1,χ =
1

fχ

fχ∑
a=1

χ(a)a

In fact one can show that the definition of Bn,χ doesn’t change if one replaces fχ in the definition by any
multiple of it.

From homework we know:

ζ(2n) =
(−1)n+1B2n(2π)2n

2(2n)!

ζ(1− 2n) = −B2n

2n

Suppose now that χ is a primitive character, i.e., a character modulo its conductor fχ. If χ were treated
as a character modulo fχd then:

L(χ, s) =
∏

p|d,p-fχ

(
1− χ(p)

ps

)−1

L(χ mod fχd, s)

Theorem 8.39. If χ is a primitive character then

L(χ, 1− n) = −Bn,χ
n

Proof. This is a long but not difficult computation in complex analysis.

8.14 The functional equation
A section containing two theorems without proofs because either they are too hard or unilluminating.

Definition 8.40. A character χ is said to be odd if χ(−1) = −1. It is even if χ(−1) = 1.

Theorem 8.41. Suppose χ is a character of conductor fχ. If χ(−1) = −1 let δχ = 1 and if χ(−1) = 1 let
δχ = 0. Then

fs/2χ ΓR(s+ δχ)L(χ, s) = Wχf
(1−s)/2
χ ΓR(1− s+ δχ)L(χ, 1− s)

where Wχ =
τ(χ)

iδχ
√
fχ

.

Recall that we showed in class that if K = Q(ζN ) then

ζK(s) =
∏
p|N

(
1− 1

||p||s

) ∏
χ mod N

L(χ mod N, s)
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Theorem 8.42. If K/Q is abelian then

ζK(s) =
∏
χ

L(χ, s)

where χ ranges through the character of the abelian Galois group Gal(K/Q).

Proof. This is analogous to the factorization from the section on primes in arithmetic progressions.

8.15 Special value of L-functions at 1
Theorem 8.43. Suppose χ is a nontrivial character.

1. If χ(−1) = −1 (χ is said to be odd) then

L(χ, 1) =
πiτ(χ)

fχ
B1,χ

2. If χ(−1) = 1 (χ is said to be even) then

L(χ, 1) = −τ(χ)

fχ

fχ∑
a=1

χ(a) log |1− ζafχ |

Proof. Part one: Using the functional equation for χ odd with δχ = 1 we get

L(χ, 1) =
Wχf

−1/2
χ ΓR(1)L(χ, 0)

ΓR(2)

= −πτ(χ)B1,χ

ifχ

=
πiτ(χ)

fχ
B1,χ

where ΓR(2) = π−1Γ(2) = π−1 and ΓR(1) = π−1/2Γ(1/2) = 1.
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Part two: For χ(−1) = 1 and χ 6= 1 everything converges in the following computation. We are using
the results from Gauss sums for replacing χ(n) with Gauss sums.

L(χ, 1) =
∑
n≥1

χ(n)

n

=
∑
n≥1

χ̂(n)

nχ̂(1)

=
∑
n≥1

1

nτ(χ)

f∑
a=1

χ(a)e2πian/f

=
1

τ(χ)

f∑
a=1

χ(a)
∑
n≥1

1

n
e2πian/f

= − 1

τ(χ)

f∑
a=1

χ(a) log(1− ζaf )
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But τ(χ) = χ(−1)τ(χ) = τ(χ) = f/τ(χ) and log(1− ζaf ) + log(1− ζ−af ) = 2 log |1− ζaf | and so

L(χ, 1) = −τ(χ)

f

1

2

f∑
a=1

(χ(a) log(1− ζaf ) + χ(−a) log(1− ζ−af ))

= −τ(χ)

f

f∑
a=1

χ(a) log |1− ζafχ |

since χ(−1) = 1.

Corollary 8.44. If χ is odd then B1,χ 6= 0.

Proof. Follows from the previous theorem and the fact that L(χ, 1) 6= 0. There is no elementary proof of
this.

Example 8.45. If χ3 =
( ·

3

)
then we compute B1,χ3

= −1/3 and we already computed τ(χ3) = i
√

3 and
fχ = 3 and so we deduce that

L(χ3, 1) = 1− 1

2
+

1

4
− 1

5
+ · · · = π

3
√

3

9 Kummer’s proof of Fermat’s Last Theorem for regular primes
Definition 9.1. A prime p is regular if p - hQ(ζp).

Remark 13. Most primes < 100 are regular but it’s still open whether there exist infinitely many regular
primes. On the other hand, it’s not hard to show that there exist infinitely many irregular primes.

Remark 14. One can show that p is regular if and only if p does not divide the numerator of the Bernoulli
number Bk for odd k ≤ p− 3. This is computationally fast.

Theorem 9.2 (Kummer). Suppose p > 3 is a regular prime. Then xp + yp = zp in Z implies xyz = 0.

As a preparatory point I stated, with examples, but no proof:

Proposition 9.3. Let p > 2 be a prime. Then Z[ζp]
× = 〈ζp〉Z[ζp + ζ−1

p ]×.

Remark 15. I added that if a, b 6≡ 0 (mod p) then
1− ζap
1− ζbp

∈ Z[ζp]
× and showed explicitly how to write it as

a root of unity times a unit in the maximal totally real subfield Q(ζp + ζ−1
p ).

For more information check out https://www3.nd.edu/~ajorza/courses/2014s-m80220/notes/lecture29.
pdf and https://www3.nd.edu/~ajorza/courses/2014s-m80220/notes/lecture30.pdf on cyclotomic units.
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Today’s lecture (and the end of the previous) was devoted to showing:

Theorem 9.4. Let x, y, z ∈ Z not divisible by p, a regular prime > 3. Then xp + yp 6= zp.

Proof. I followed Emily Riehl’s senior thesis.

At the end I monologued a little about class field theory and the Langlands program.
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